

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 14 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, please
 - Staple your pages
 - Use Letter-sized sheets

Administrative Stuff

TA Office Hours:

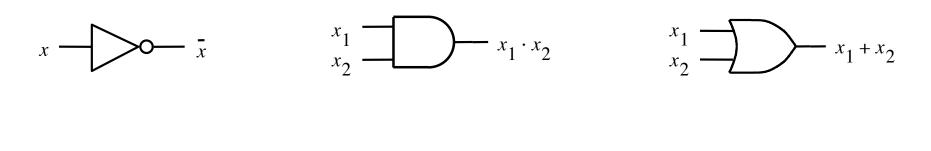
- Mondays @ 9:30 10:30 am (James Bonner) Location: TLA (Coover Hall - first floor)
- Tuesdays @ 11:00 am 1:00 pm (Yu-Wen Chen) Location: Durham Hall, room 314.
- Thursdays @ 2:30-3:30 pm (James Bonner) Location: TLA (Coover Hall - first floor)
- Fridays @ 12:00 pm 2:00 pm (Rakesh Maddineni) Location: TLA (Coover Hall - first floor)

Administrative Stuff

Homework Solutions will be posted on BlackBoard

Quick Review

The Three Basic Logic Gates



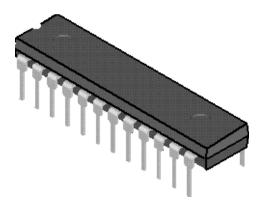
NOT gate

AND gate

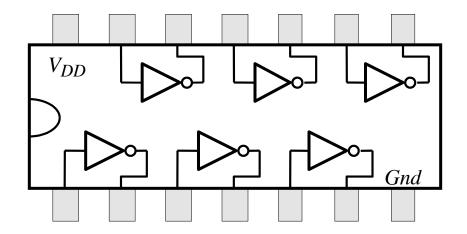
OR gate

You can build any circuit using only these three gates

[Figure 2.8 from the textbook]



(a) Dual-inline package



(b) Structure of 7404 chip

Figure B.21. A 7400-series chip.

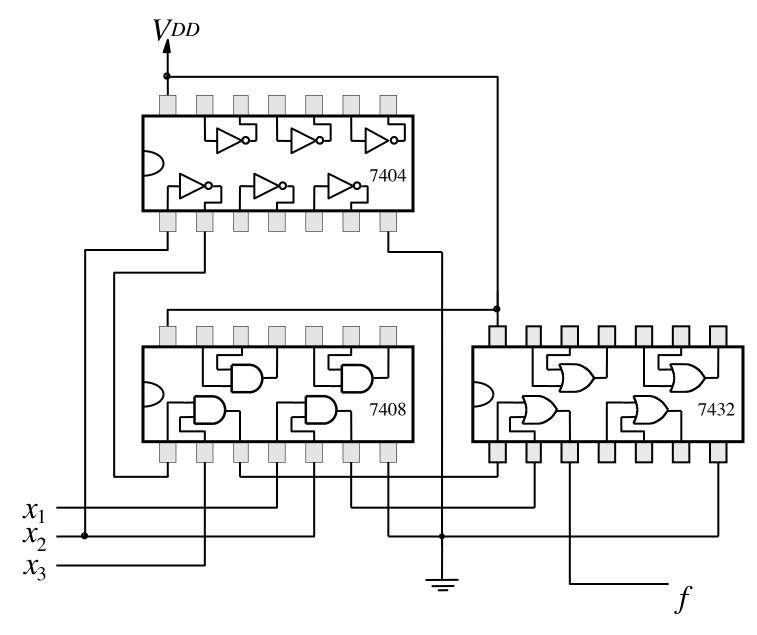
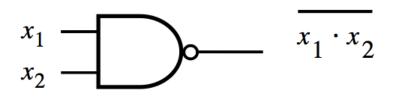
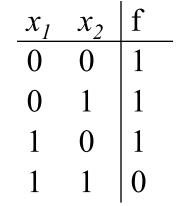


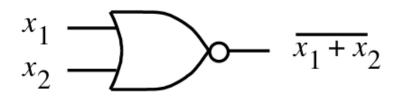
Figure B.22. An implementation of $f = x_1x_2 + \overline{x}_2x_3$.

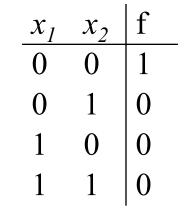
NAND Gate



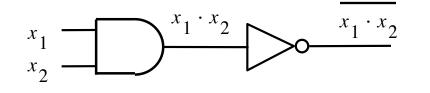


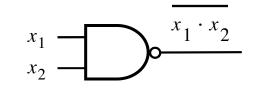
NOR Gate

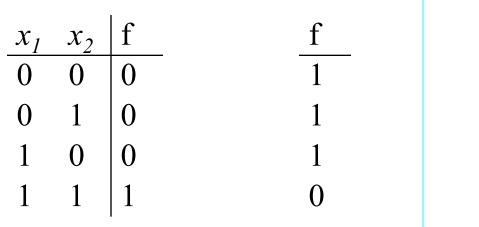


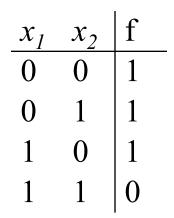


AND followed by NOT = NAND

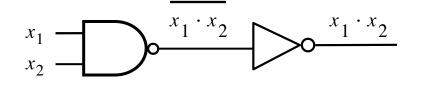


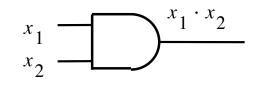


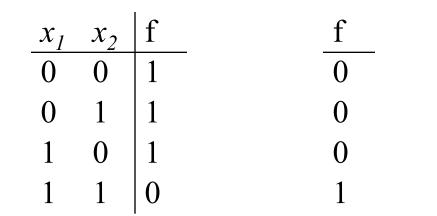


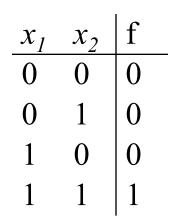


NAND followed by NOT = AND

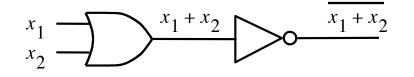


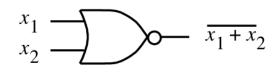


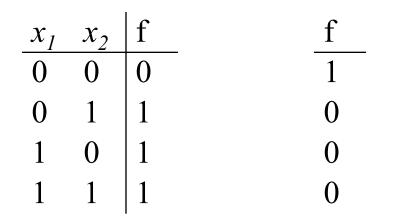


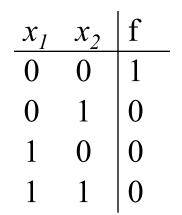


OR followed by NOT = NOR

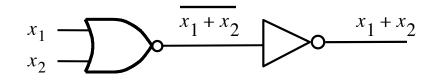


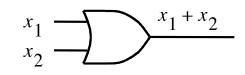


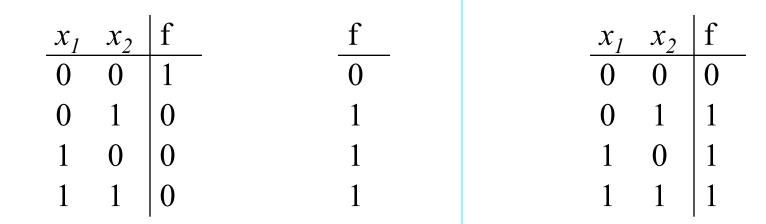




NOR followed by NOT = OR





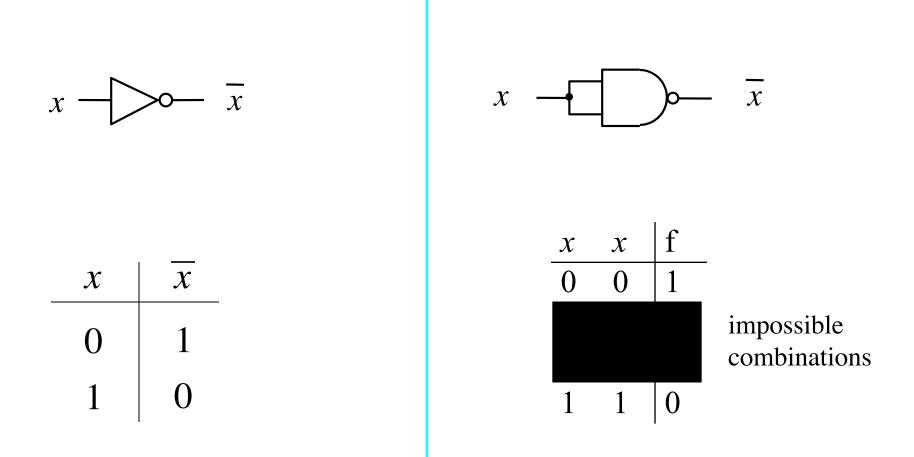


Why do we need two more gates?

They can be implemented with fewer transistors.

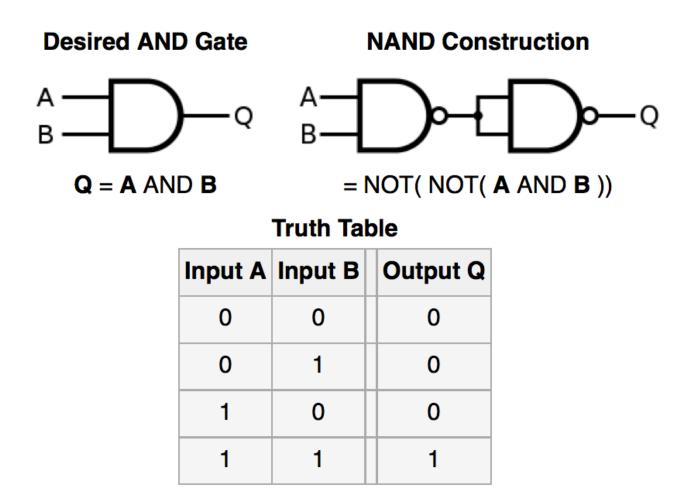
(more about this later)

Building a NOT Gate with NAND



Thus, the two truth tables are equal!

Building an AND gate with NAND gates

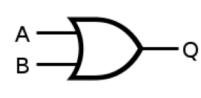


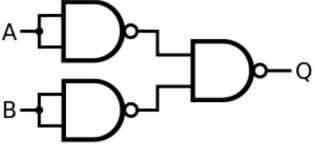
[http://en.wikipedia.org/wiki/NAND_logic]

Building an OR gate with NAND gates

Desired OR Gate

NAND Construction





 $\mathbf{Q} = \mathbf{A} \text{ OR } \mathbf{B}$

= NOT[NOT(**A** AND **A**) AND NOT(**B** AND **B**)]

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

[http://en.wikipedia.org/wiki/NAND_logic]

Implications

Any Boolean function can be implemented with only NAND gates!

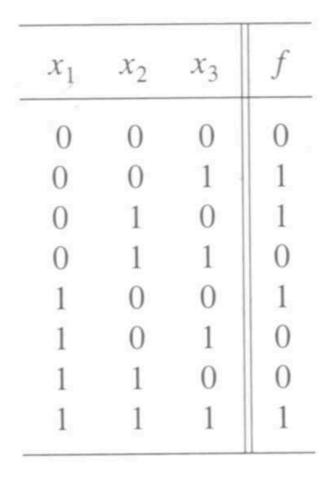
Implications

Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!

Another Synthesis Example

Truth table for a three-way light control



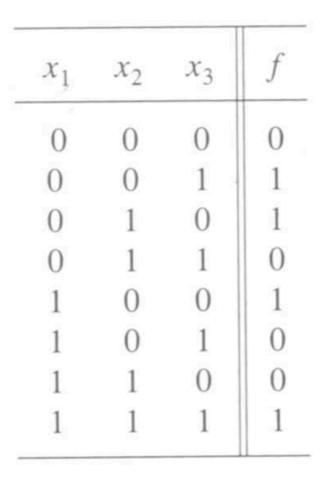
Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{ccc} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{ccc} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 \overline{x}_3 \\ m_6 = x_1 \overline{x}_2 \overline{x}_3 \\ m_7 = x_1 \overline{x}_2 x_3 \end{array} $	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Let's Derive the SOP form

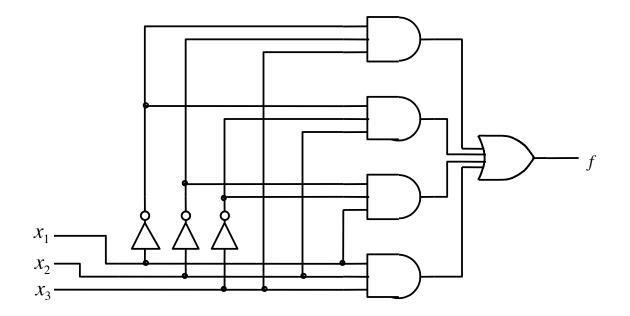
			-
x_1	<i>x</i> ₂	<i>x</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Let's Derive the SOP form



 $f = m_1 + m_2 + m_4 + m_7$ = $\overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$

Sum-of-products realization



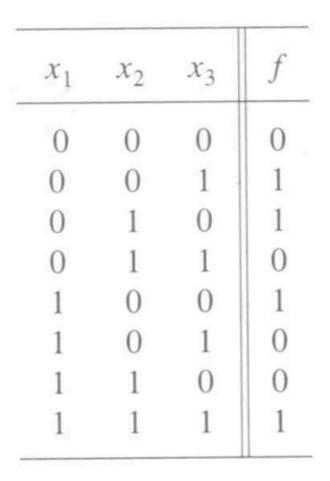
[Figure 2.32a from the textbook]

Let's Derive the POS form

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\int f$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

[Figure 2.31 from the textbook]

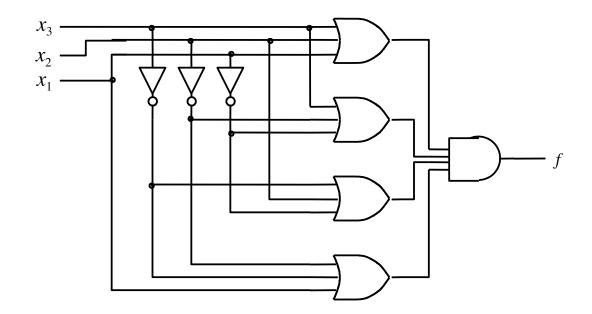
Let's Derive the POS form



$$f = M_0 \cdot M_3 \cdot M_5 \cdot M_6$$

= $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$

Product-of-sums realization



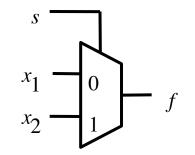
[Figure 2.32b from the textbook]

Multiplexers

2-1 Multiplexer (Definition)

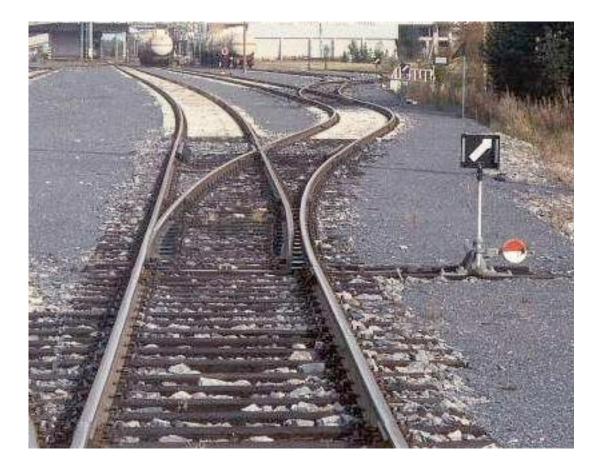
- Has two inputs: x_1 and x_2
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x_2

Graphical Symbol for a 2-1 Multiplexer



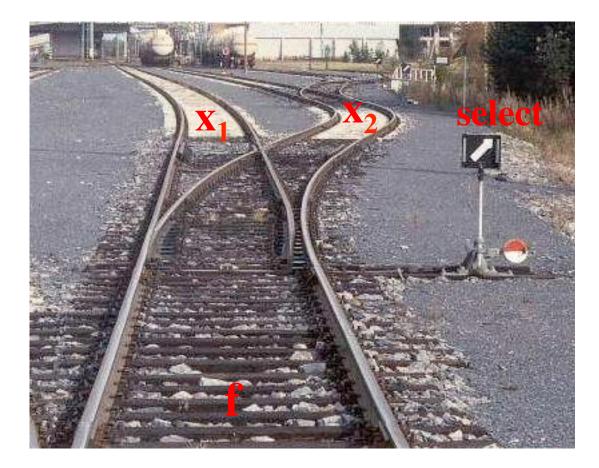
[Figure 2.33c from the textbook]

Analogy: Railroad Switch



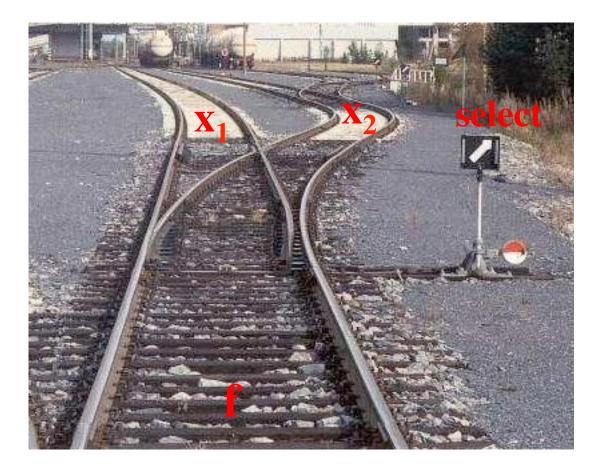
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

http://en.wikipedia.org/wiki/Railroad_switch]

Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$

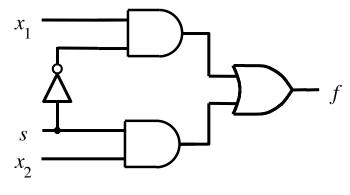
Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

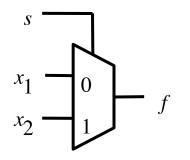
$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

Circuit for 2-1 Multiplexer



(b) Circuit



(c) Graphical symbol

[Figure 2.33b-c from the textbook]

More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

S	$f(s, x_1, x_2)$
0	x_1
1	<i>x</i> ₂

(a)Truth table

[Figure 2.33 from the textbook]

4-1 Multiplexer (Definition)

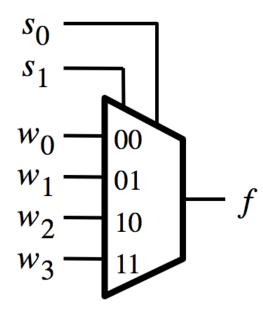
- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

4-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

We'll talk more about this when we get to chapter 4, but here is a quick preview.

Graphical Symbol and Truth Table



<i>s</i> ₁	<i>s</i> 0	f
0	0	w ₀
0	1	w_1
1	0	w_2
1	1	<i>w</i> ₃

(a) Graphic symbol

(b) Truth table

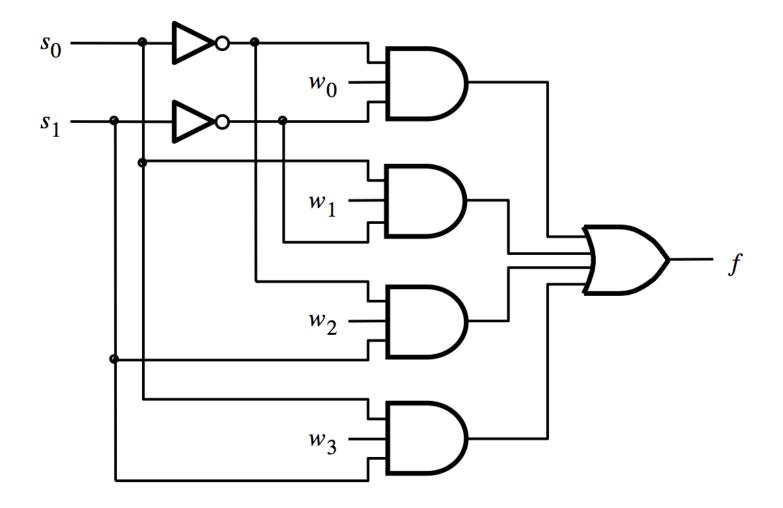
$\mathbf{S}_1 \mathbf{S}_0$	I ₃ I ₂ I ₁ I ₀	F S1 S0	I ₃ I ₂ I	1 I0 F	S_1S_0 I_3 I_2 I_1 I_0	F S1 S0 I3 I2 I1 I0 F
0 0	0 0 0 0	0 0 1	0 0 0	0 0	100000	0 1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0) 1 0	0 0 0 1	0 0 0 1 0
	0 0 1 0	0	0 0 1	0 1	0 0 1 0	0 0 0 1 0 0
	0 0 1 1	1	0 0 1	1 1	0 0 1 1	0 0 0 1 1 0
	0 1 0 0	0	0 1 0	0 0	0 1 0 0	1 0 1 0 0 0
	0 1 0 1	1	0 1 0) 1 0	0 1 0 1	1 0 1 0 1 0
	0 1 1 0	0	0 1 1	0 1	0 1 1 0	1 0 1 1 0 0
	0 1 1 1	1	0 1 1	1 1	0 1 1 1	1 0 1 1 1 0
	1 0 0 0	0	1 0 0	0 0	1 0 0 0	0 1 0 0 0 1
	1001	1	1 0 0) 1 0	1 0 0 1	0 1 0 0 1 1
	1010	0	1 0 1	0 1	1 0 1 0	0 10101
	1 0 1 1	1	1 0 1	1 1	1 0 1 1	0 1 0 1 1 1
	1 1 0 0	0	1 1 0	0 0	1 1 0 0	1 1 1 0 0 1
	1 1 0 1	1	1.1.0) 1 0	1 1 0 1	1 1 1 0 1 1
	1 1 1 0	0	1 1 1	0 1	1 1 1 0	1 1 1 0 1
	1 1 1 1	1	1 1 1	1 1	1 1 1 1	1 1 1 1 1

$\mathbf{S}_1 \mathbf{S}_0$	I ₃ I ₂ I ₁	Io	F	$\mathbf{S}_1\mathbf{S}_0$	I3	I ₂	I_1	I_0	F	1	S_1	S_0	I3	I_2	I_1	Io	F	S	$1 S_0$	I3	I_2	I_1	I ₀	F
0 0	0 0 0	0	0	0 1	0	0	0	0	0		1	0	0	0	0	0	0	1	1	0	0	0	0	0
	0 0 0	1	1		0	0	0	1	0				0	0	0	1	0			0	0	0	1	0
	0 0 1	0	0		0	0	1	0	1				0	0	1	0	0			0	0	1	0	0
	0 0 1	1	1		0	0	1	1	1				0	0	1	1	0			0	0	1	1	0
	0 1 0	0	0		0	1	0	0	0				0	1	0	0	1			0	1	0	0	0
	0 1 0	1	1		0	1	0	1	0				0	1	0	1	1			0	1	0	1	0
	0 1 1	0	0		0	1	1	0	1				0	1	1	0	1			0	1	1	0	0
	0 1 1	1	1		0	1	1	1	1				0	1	1	1	1			0	1	1	1	0
	1 0 0	0	0		1	0	0	0	0				1	0	0	0	0			1	0	0	0	1
	1 0 0	1	1		1	0	0	1	0				1	0	0	1	0			1	0	0	1	1
	1 0 1	0	0		1	0	1	0	1				1	0	1	0	0			Т	0	1	0	1
	1 0 1	1	1		1	0	1	1	1				1	$_{0}$	1	1	0			1	0	1	1	1
	1 1 0	0	0		1	1	0	0	0				1	1	0	0	1			1	1	0	0	1
	1 1 0	1	1		1	1	0	1	0				1	1	0	1	1			1	1	0	1	1
	1 1 1	0	0		1	1	1	0	1				1	1	1	0	1			1	1	1	0	1
	1 1 1	1	1		1	1	1	1	1				1	1	1	1	1			1	1	1	1	1

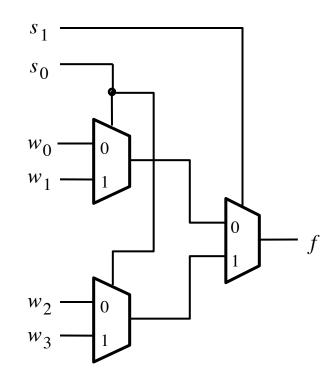
S_1S_0	3 J	[2	I_1	I ₀	F	S_1	S_0	I3	I_2	I_1	I_0	F	5	S ₁ ;	S_0	I3	I_2	I_1	Io	F	S	$_{1}S$	0	I3	I ₂	I_1	I ₀	F
0 0 0)	0	0	0	0	0	1	0	0	0	0	0		1	0	0	0	0	0	0	1	1		0	0	0	0	0
0)	0	0	1	1			0	0	0	1	0				0	0	0	1	0				0	0	0	1	0
0)	0	1	0	0			0	0	1	0	1				0	0	1	0	0				0	0	1	0	0
0)	0	1	1	1			0	0	1	1	1				0	0	1	1	0				0	0	1	1	0
0)	1	0	0	0			0	1	0	0	0				0	1	0	0	1				0	1	0	0	0
0)	1	0	1	1			0	1	0	1	0				0	1	0	1	1				0	1	0	1	0
0)	1	1	0	0			0	1	1	0	1				0	1	1	0	1				0	1	1	0	0
0)	1	1	1	1			0	1	1	1	1				0	1	1	1	1				0	1	1	1	0
1		0	0	0	0			1	0	0	0	0				1	0	0	0	0				1	0	0	0	1
1		0	0	1	1			1	0	0	1	0				1	0	0	1	0				1	0	0	1	1
1		0	1	0	0			1	0	1	0	1				1	0	1	0	0				1	0	1	0	1
1		0	1	1	1			1	0	1	1	1				1	0	1	1	0				1	0	1	1	1
1	l	1	0	0	0			1	1	0	0	0				1	1	0	0	1				1	1	0	0	1
1		1	0	1	1			1	1	0	1	0				1	1	0	1	1				1	1	0	1	1
1		1	1	0	0			1	1	1	0	1				1	1	1	0	1				1	1	1	0	1
1	l	1	1	1	1			1	1	1	1	1				1	1	1	1	1				1	1	1	1	1

S_1S_0	I ₃ I ₂ I ₁ I ₀	F S1 S0	I3 I2 I	$I_1 I_0$	F S1 S0	I3 I2 I1	I ₀ F S	$ S_0 $	[3]	I ₂ I	I Io	F
0 0	0 0 0 0	0 0 1	0 0	0 0	0 1 0	0 0 0	0 0 1	1	0	0 0	0	0
	0 0 0 1	1	0 0	0 1	0	0 0 0	1 0		0	0 0	1	0
	0 0 1 0	0	0 0	1 0	1	$0 \ 0 \ 1$	0 0		0	0 1	0	0
	0 0 1 1	1	0 0	1 1	1	0 0 1	1 0		0	0 1	1	0
	0 1 0 0	0	0 1	0 0	0	0 1 0	0 1		0	1 0	0	0
	0 1 0 1	1	0 1	0 1	0	0 1 0	1 1		0	1 0	1	0
	0 1 1 0	0	0 1	1 0	1	0 1 1	0 1		0	1 1	0	0
	0 1 1 1	1	0 1	1 1	1	0 1 1	1 1		0	1 1	1	0
	1 0 0 0	0	1 0	0 0	0	1 0 0	0 0		1	0 0	0	1
	1 0 0 1	1	1 0	0 1	0	1 0 0	1 0		1	0 0	1	1
	1010	0	1 0	1 0	1	1 0 1	0 0		I.	0 1	0	1
	1 0 1 1	1	1 0	1 1	1	$1 \ 0 \ 1$	1 0		1	0 1	1	1
	1 1 0 0	0	1 1	0 0	0	1 1 0	0 1		1	1 0	0	1
	1 1 0 1	1	1.1	0 1	0	1 1 0	1 1		1	1 0	1	1
	1 1 1 0	0	1 1	1 0	1	$1 \ 1 \ 1$	0 1		1	1 1	0	1
	1 1 1 1	1	1 1	1 1	1	1 1 1	1 1		I.	1 1	1	1

4-1 Multiplexer (SOP circuit)



[Figure 4.2c from the textbook]

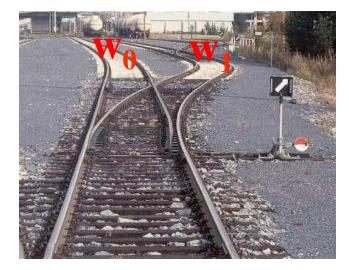


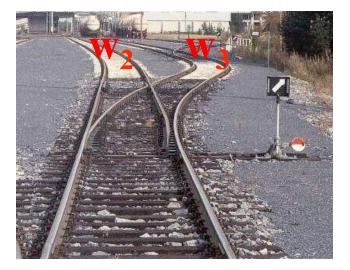
[Figure 4.3 from the textbook]

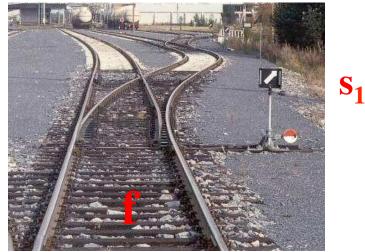
Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

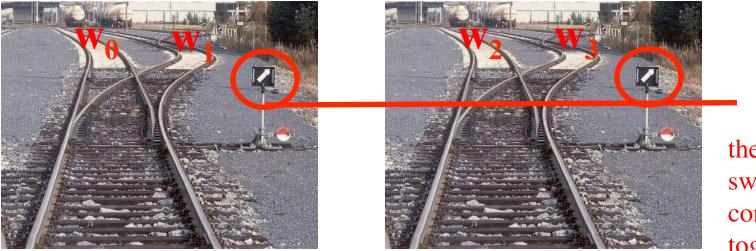






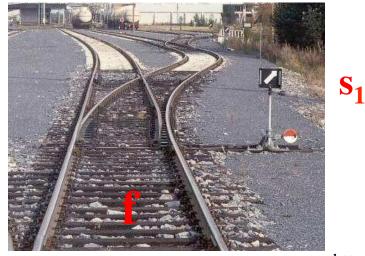
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

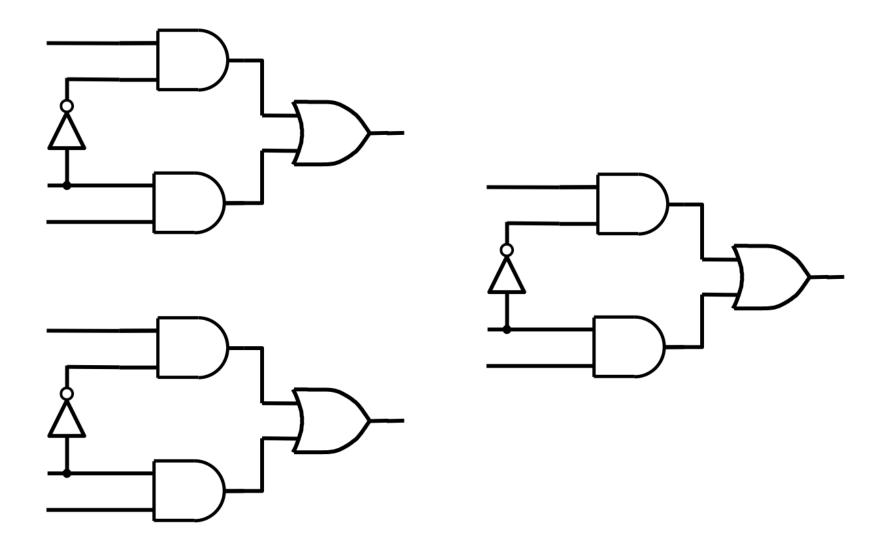


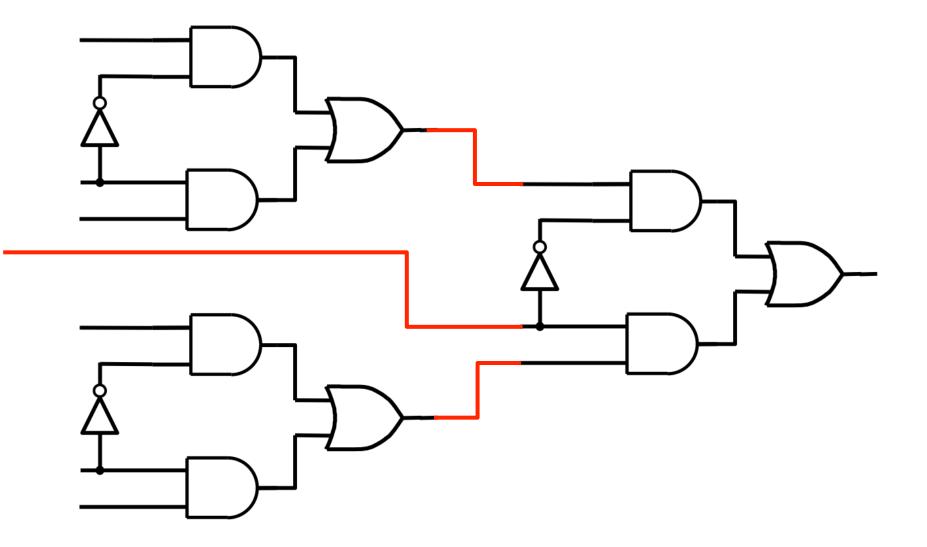
these two switches are controlled together

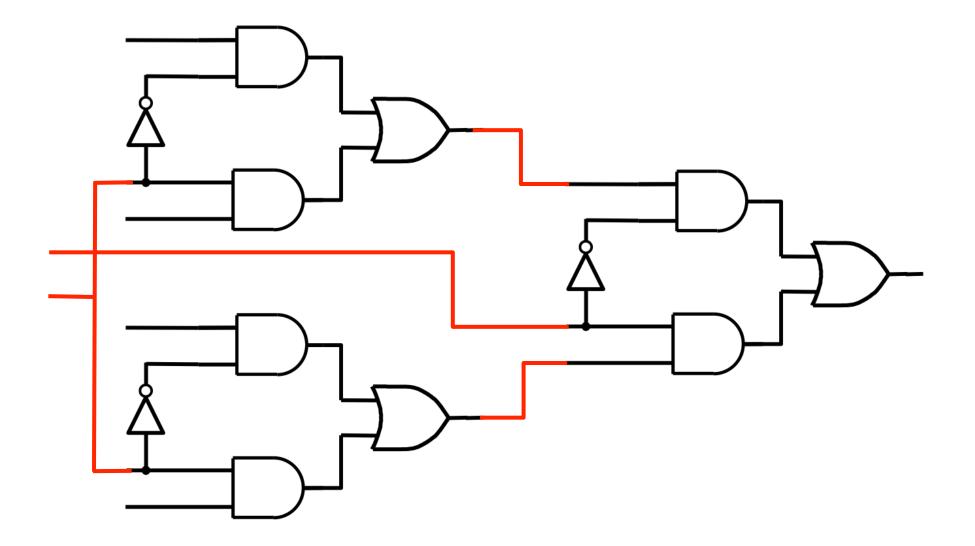
S₀

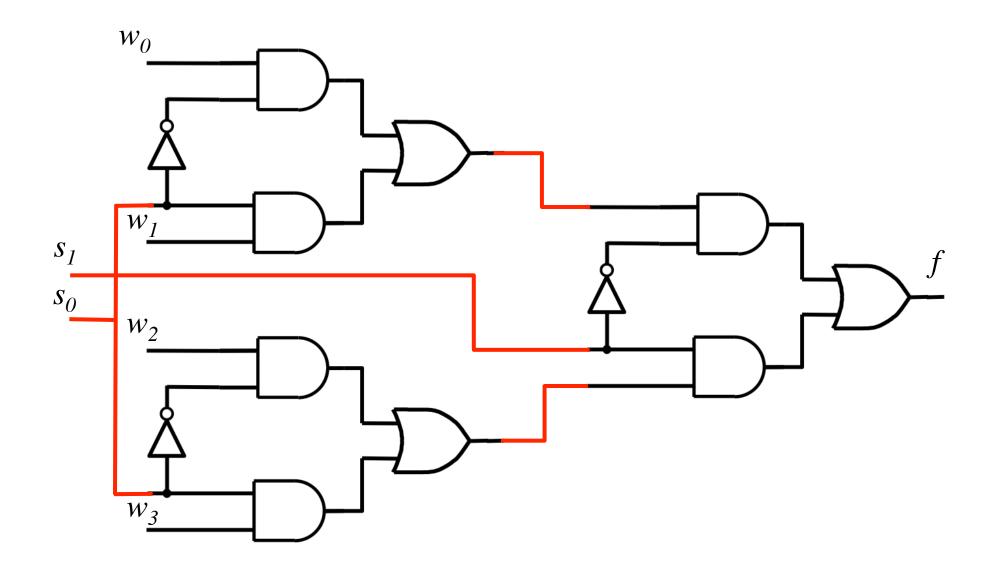


http://en.wikipedia.org/wiki/Railroad_switch]

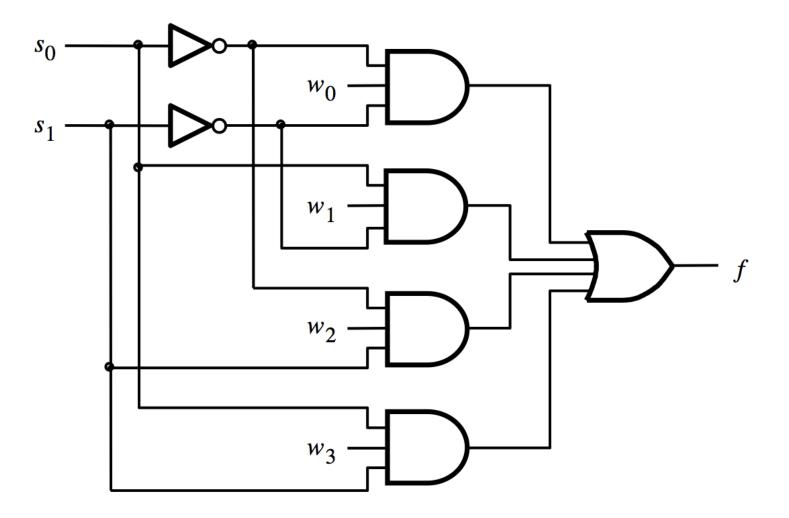




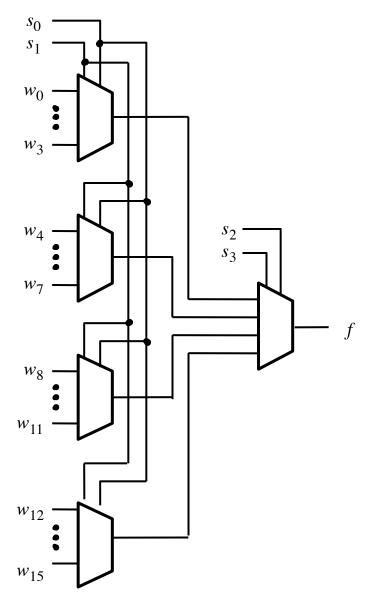




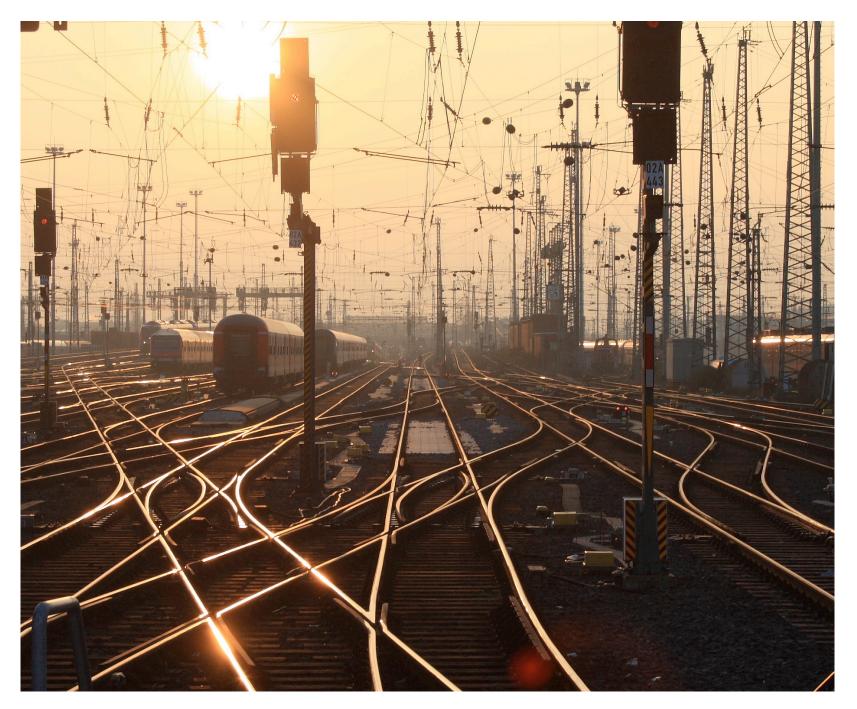
That is different from the SOP form of the 4-1 multiplexer shown below, which uses less gates



16-1 Multiplexer



[Figure 4.4 from the textbook]



[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END