

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

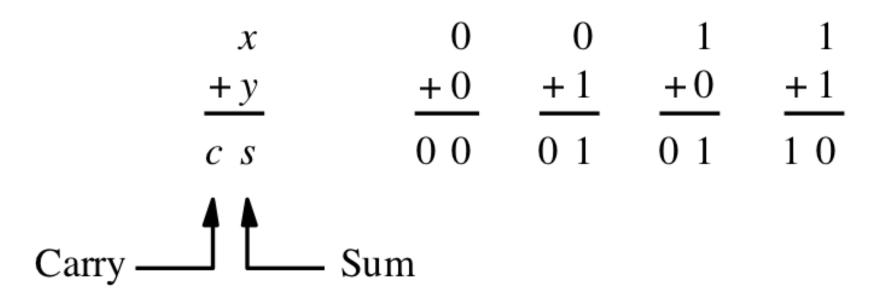
- HW5 is out
- It is due on Monday Oct 5 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter

Administrative Stuff

- Labs Next Week
- Mini-Project
- This one is worth 3% of your grade.
- Make sure to get all the points.
- http://www.ece.iastate.edu/~alexs/classes/ 2015_Fall_281/labs/Project-Mini/

Quick Review

Adding two bits (there are four possible cases)

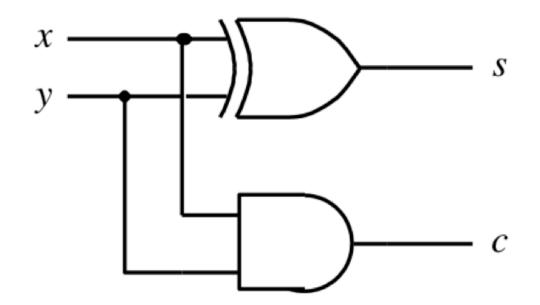


[Figure 3.1a from the textbook]

Adding two bits (the truth table)

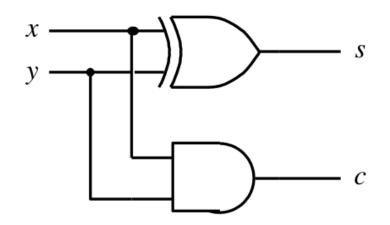
хy	Carry c	Sum
$egin{array}{ccc} 0 & 0 \ 0 & 1 \ 1 & 0 \ 1 & 1 \ 1 & 1 \end{array}$	0 0 0 1	0 1 1 0

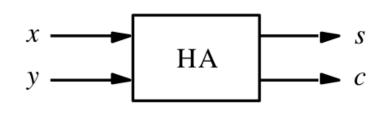
Adding two bits (the logic circuit)



[Figure 3.1c from the textbook]

The Half-Adder





(d) Graphical symbol

[Figure 3.1c-d from the textbook]

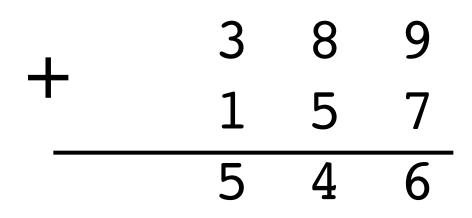
Addition of multibit numbers

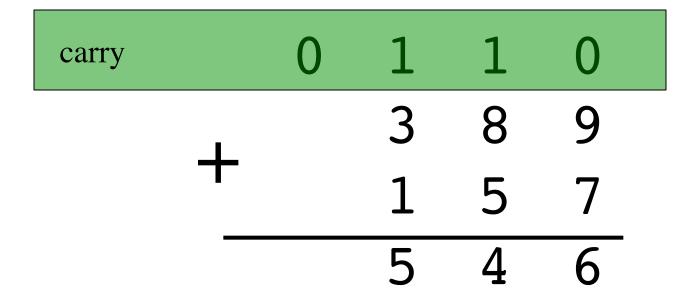
Generated carries —	▶ 1110			 c_{i+1}	c _i	
$X = x_4 x_3 x_2 x_1 x_0$	01111	(15) ₁₀		 	x_i	
$+ Y = y_4 y_3 y_2 y_1 y_0$	+ 0 1 0 1 0	+ (10) ₁₀		 	y_i	
$S = s_4 s_3 s_2 s_1 s_0$	11001	(25) ₁₀	_	 	s _i	

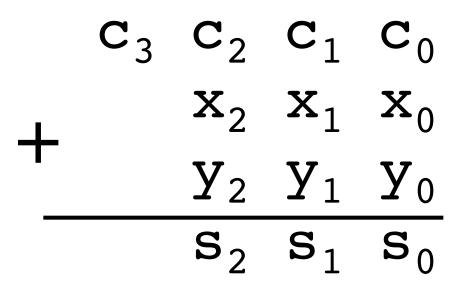
Bit position *i*

[Figure 3.2 from the textbook]

$$+ \begin{array}{cccc} \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_0 \\ & \mathbf{y}_2 & \mathbf{y}_1 & \mathbf{y}_0 \\ \hline & \mathbf{s}_2 & \mathbf{s}_1 & \mathbf{s}_0 \end{array}$$







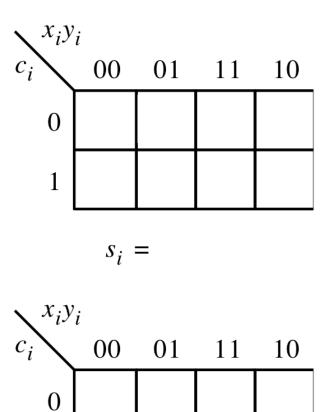
Problem Statement and Truth Table

	$c_i x_i y_i$	c_{i+1}
c_{i+1} c_i		0
x _i	 $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	0
<i>y_i</i>	 0 1 0	0
_	 0 1 1	1
s _i	 $1 \ 0 \ 0$	0
	1 0 1	1
	1 1 0	1
	1 1 1	1

[Figure 3.3a from the textbook]

Let's fill-in the two K-maps

c _i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
	0	1	0	1
0	1	0	0	1
0		1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



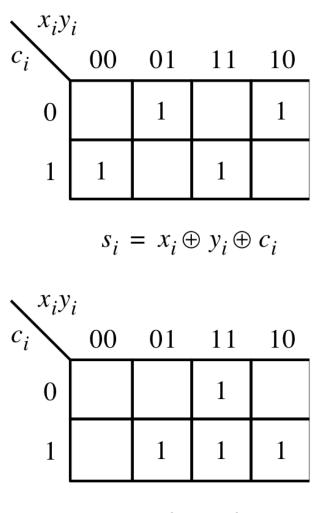
 $c_{i+1} =$

1

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

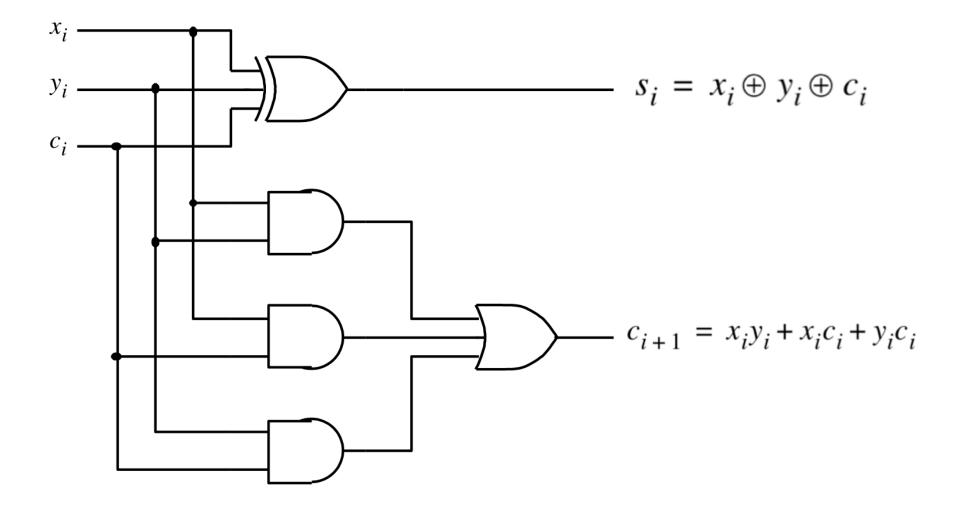
c _i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

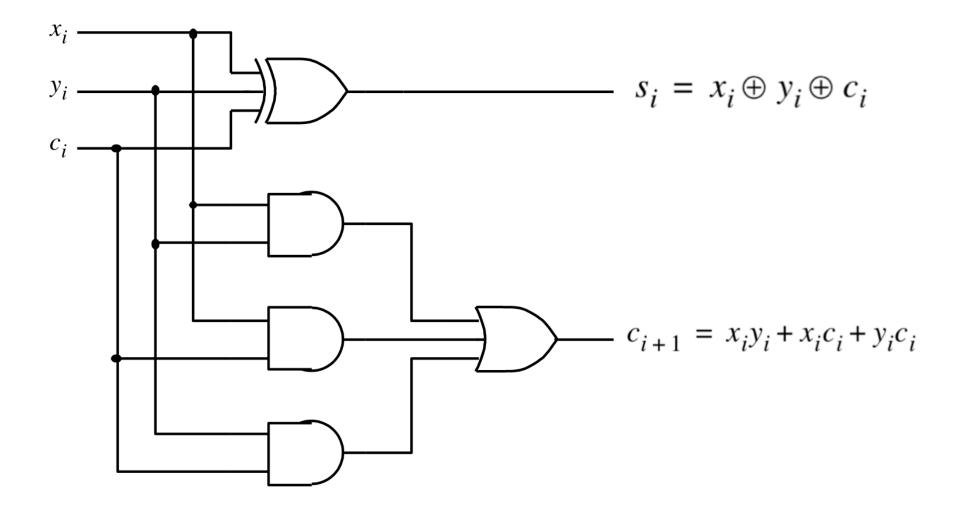
[Figure 3.3a-b from the textbook]

The circuit for the two expressions



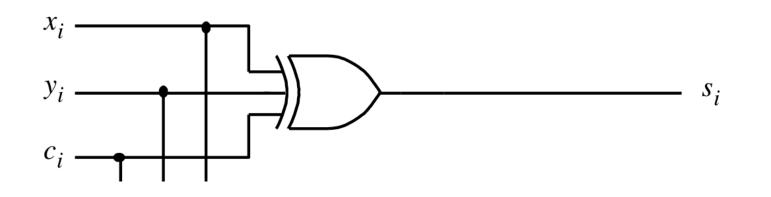
[Figure 3.3c from the textbook]

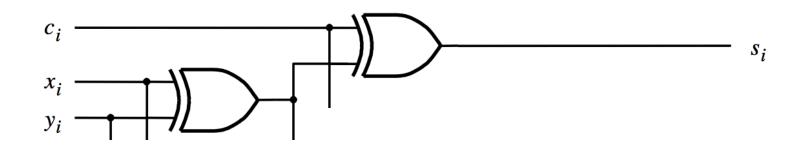
This is called the Full-Adder



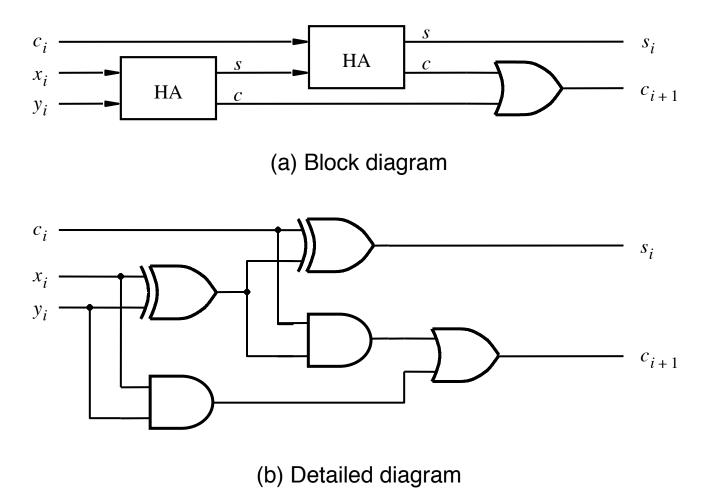
[Figure 3.3c from the textbook]

XOR Magic (s_i can be implemented in two different ways) $s_i = x_i \oplus y_i \oplus c_i$



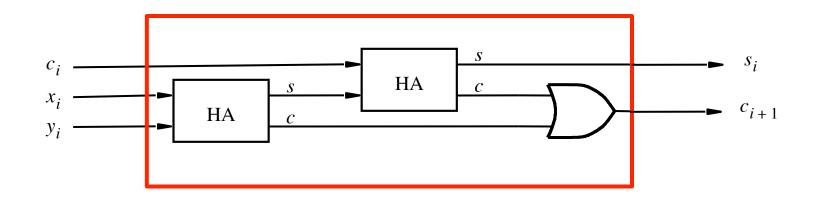


A decomposed implementation of the full-adder circuit

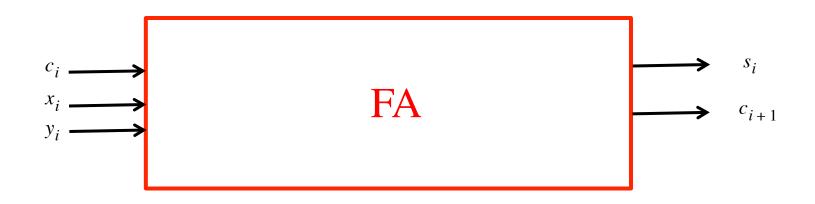


[Figure 3.4 from the textbook]

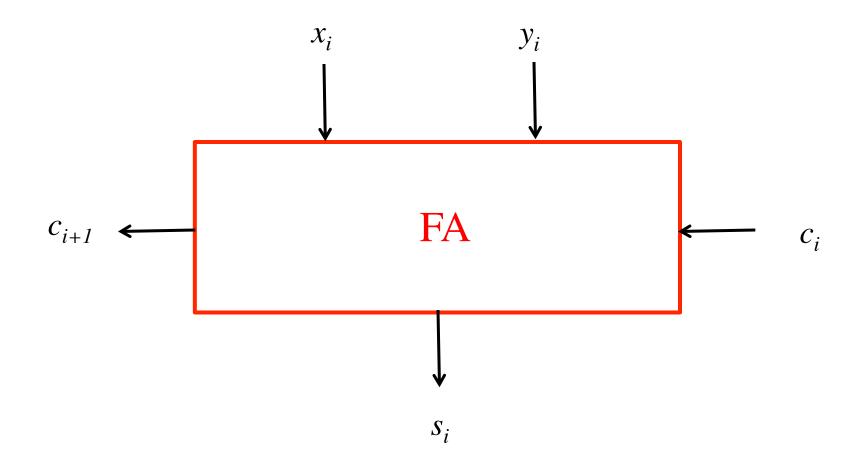
The Full-Adder Abstraction



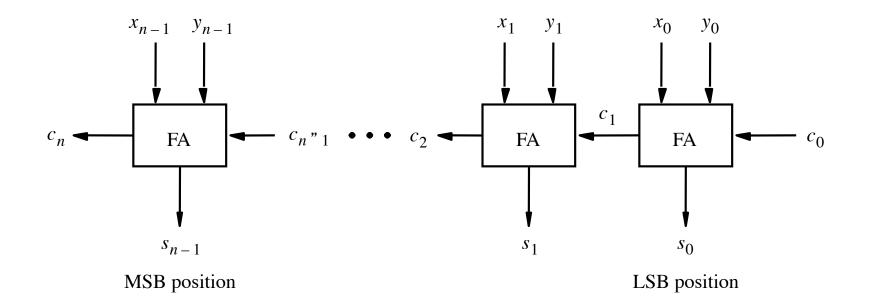
The Full-Adder Abstraction



We can place the arrows anywhere

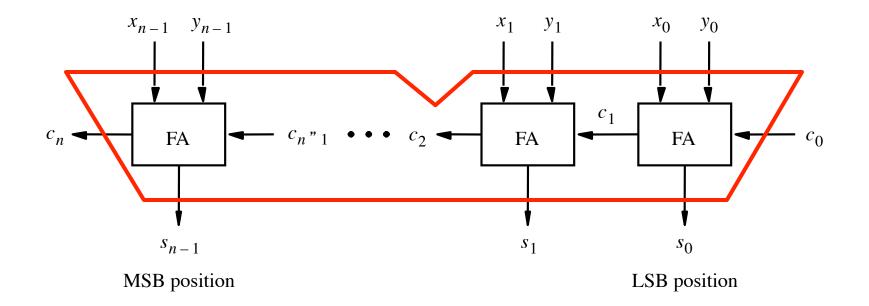


n-bit ripple-carry adder

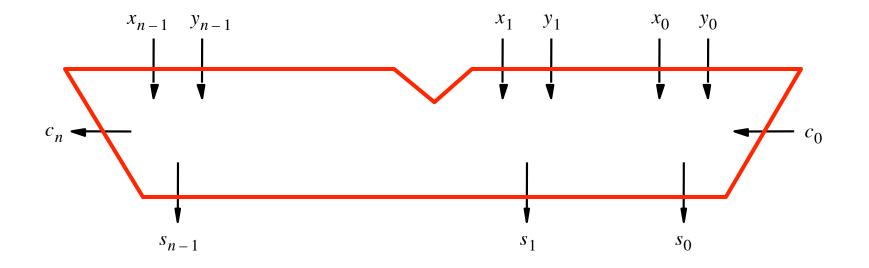


[Figure 3.5 from the textbook]

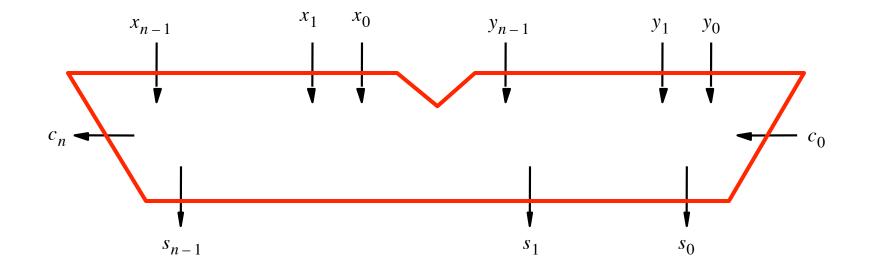
n-bit ripple-carry adder abstraction



n-bit ripple-carry adder abstraction

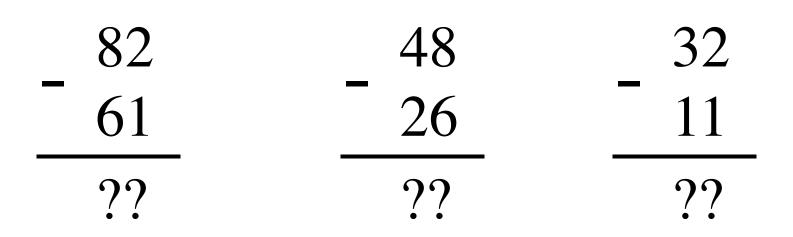


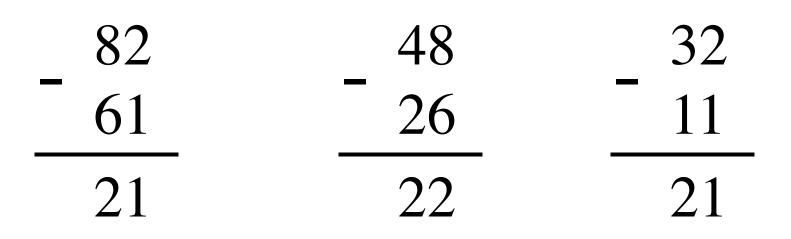
The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

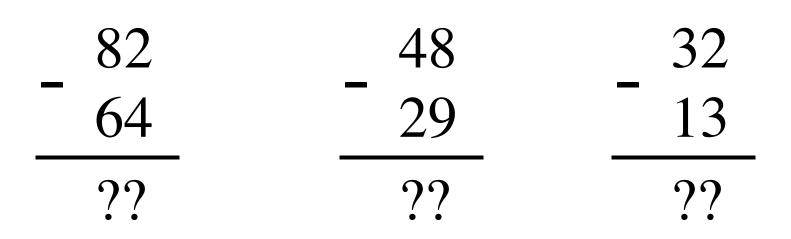


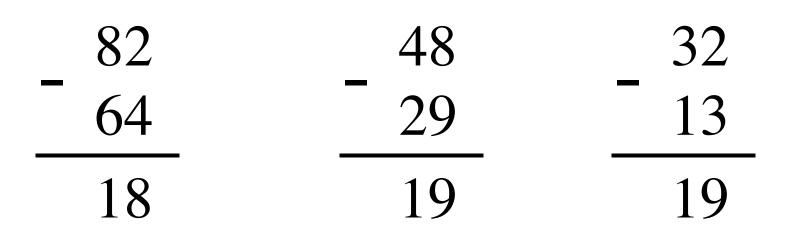
- 39 - 15 ??

- 39 - 15 - 24









The problems in which row are easier to calculate?

82	48	32
61	_ 26	11
??	??	??
82	48	32
- ⁸² 64	- 48 29	- 13
??	??	??

The problems in which row are easier to calculate?

82	48	32
61	_ 26	11
21	22	21
Why?		
82	_ 48	32
64	29	13
18	19	19

82 - 64 = 82 + 100 - 100 - 64

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100= 82 + (99 + 1 - 64) - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

= 82 + (99 + 1 - 64) - 100

= 82 + (99 - 64) + 1 - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

= 82 + (99 + 1 - 64) - 100

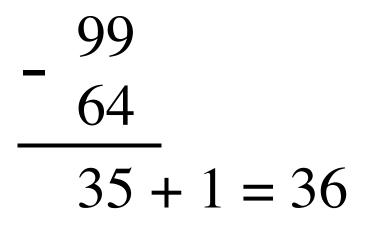
Does not require borrows

$$= 82 + (99 - 64) + 1 - 100$$

9's Complement (subtract each digit from 9)

99 64 35

10's Complement (subtract each digit from 9 and add 1 to the result)



82 - 64 = 82 + (99 - 64) + 1 - 100

9's complement

82 - 64 = 82 + (99 - 64) + 1 - 100

9's complement

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= 82 + 35 + 1 - 100

9's complement

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= 82 + (35 + 1) - 100

9's complement

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$
$$= 82 + (35 + 1) - 100$$

= 82 + 36 - 100 // add the first two

9's complement

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

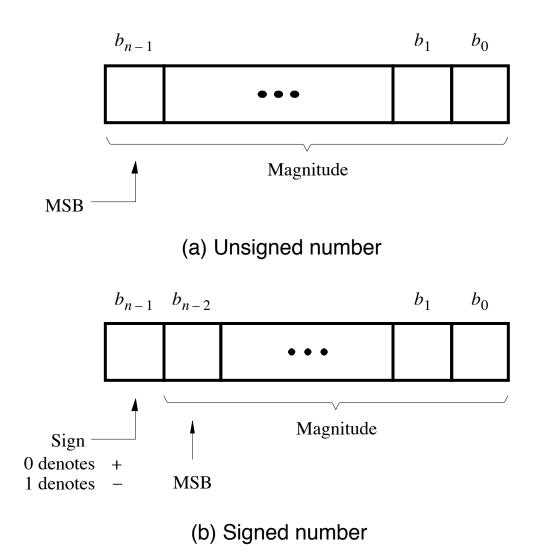
= 82 + (35 + 1) - 100

= 18

= 82 + 36 - 100 // add the first two

 $= 118 - 100 \qquad // delete the leading 1$

Formats for representation of integers



[Figure 3.7 from the textbook]

Negative numbers can be represented in following ways

- Sign and magnitude
- •1's complement
- •2' s complement

1's complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^n - 1$, namely

$$\mathbf{K} = (2^n - 1) - \mathbf{P}$$

This means that K can be obtained by inverting all bits of P.

Find the 1's complement of ...

Find the 1's complement of ...

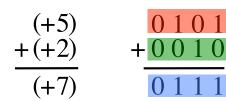
0 1 0 1 1 0 1 0 1 1 0 1

Just flip 1's to 0's and vice versa.

$b_3 b_2 b_1 b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000	$ \begin{array}{r} +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -7 \end{array} $
1000 1001 1010 1011 1100 1101 1110 1111	$-6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ -0$

(+5) +(+2)	$ \begin{array}{r} 0 \ 1 \ 0 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \end{array} $
(+7)	0111

$b_3 b_2 b_1 b_0$	1's complement
0111 0110 0101 0100 0011 0000 1000 100	$ \begin{array}{r} +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ \end{array} $
1111	-0



$b_3b_2b_1b_0$	1's complement
$\begin{array}{c} b_3 b_2 b_1 b_0 \\ 0111 \\ 0110 \\ 0101 \\ 0100 \\ 0011 \\ 0000 \\ 1000 \\ 1000 \\ 1001 \\ 1010 \end{array}$	$ \begin{array}{r} +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -7 \\ -6 \\ -5 \end{array} $
$ 1011 \\ 1100 \\ 1101 \\ 1110 \\ 1111 $	$-4 \\ -3 \\ -2 \\ -1 \\ -0$

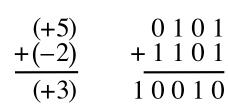
(- 5)	1010
+(+2)	+ 0010
(- 3)	1100

[Figure 3.8 from the textbook]

$b_3 b_2 b_1 b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

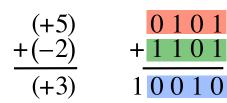
(- 5) +(+2)	$\frac{1010}{+0010}$
(- 3)	1100

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0



[Figure 3.8 from the textbool	<u>[</u>]
-------------------------------	------------

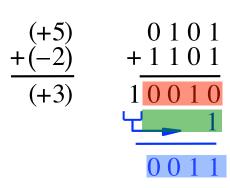
$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0



			$b_3b_2b_1b_0$	1's complement
			0111	+7
			0110	+6
(15)	0101		0101	+5
(+5)	+1101		0100	+4
+(-2)			0011	+3
(+3)	10010	But this is 2!	0010	+2
			0001	+1
			0000	+0
			1000	-7
			1001	-6
			1010	-5
			1011	-4
			1100	-3
			1101	-2
			1110	-1
			1111	-0
				l

Т

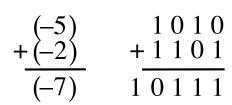
	$b_3 b_2 b_1 b_0$	1's complement
	0111	+7
	0110	+6
	0101	+5
(+5) 0 1 0 1 + (-2) + 1 1 0 1	0100	+4
+(-2) + 1 1 0 1	0011	+3
(+3) 10010	0010	+2
· · · · · · · · · · · · · · · · · · ·	0001	+1
	0000	+0
0011	1000	-7
	1001	-6
	1010	-5
	1011	-4
We need to perform one	1100	-3
more addition to get the result.	1101	-2
more addition to get the result.	1110	-1
	1111	-0



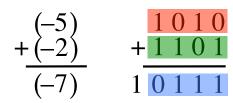
We need to perform one more addition to get the result.

$b_3 b_2 b_1 b_0$	1's complement
$b_3b_2b_1b_0$ 0111 0110 0101 0100 0011 0010 0001 0000 1000 1000 1001 1010 1011 1100	$ \begin{array}{c} +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ \end{array} $
$1101 \\ 1110 \\ 1111$	$\begin{array}{c} -2 \\ -1 \\ -0 \end{array}$

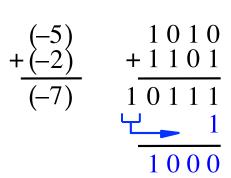
$b_3 b_2 b_1 b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0



$b_3 b_2 b_1 b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001	+7 +6 +5 +4 +3 +2 +1
0000 1000 1001 1010 1011 1100 1101 1110 1111	$+0 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ -0$

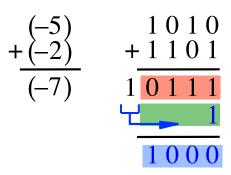


(-5) + (-2)	1010 +1101		$b_3b_2b_1b_0$ 0111 0110 0101 0100 0211	1's complement +7 +6 +5 +4
(-7)	10111	But this is +7!	$0011 \\ 0010 \\ 0001$	$^{+3}_{+2}_{+1}$
			0000	+0
			1000	-7
			1001	-6
			1010	-5
			1011	-4
			$\frac{1100}{1101}$	$-3 \\ -2$
			1110	-1
			1111	-0



We need to perform one more addition to get the result.

$b_3 b_2 b_1 b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0



We need to perform one more addition to get the result.

1's complement
+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4
$-3 \\ -2 \\ -1 \\ -0$

2's complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2^n , namely

$$K = 2^n - P$$

Deriving 2's complement

For a positive n-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P$$

 $K_2 = 2^n - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

Find the 2's complement of ...

Find the 2's complement of ...

0 1 0 1 1 0 1 1 1 1 1 0

0011 1101

0111 1001

Quick Way to find 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

Interpretation of four-bit signed integers

$b_{3}b_{2}b_{1}b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

[Table 3.2 from the textbook]

A) Example of 2's complement addition

B) Example of 2's complement addition

	$b_3 b_2 b_1 b_0$	2's complement
	0111	+7
	0110	+6
1011	0101	+5
+ 0010	0100	+4
	0011	+3
1 1 0 1	0010	+2
	0001	+1
	0000	+0
	1000	-8
	1001	-7
	1010	-6
	1011	-5
	1100	-4
	1101	-3
	1110	-2
	1111	-1

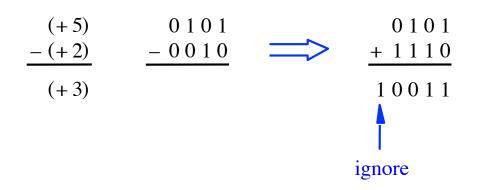
(-5) + (+ 2)(-3)

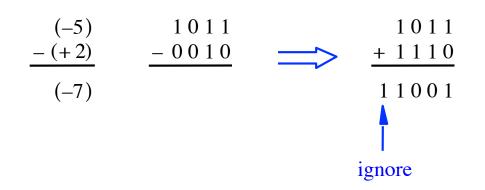
C) Example of 2's complement addition

	$b_3 b_2 b_1 b_0$	2's complement
	0111	+7
	0110 0101	$^{+6}_{+5}$
(+5) 0101	0100	+4
+ (-2) + 1110	0011	+3
	0010	+2
(+3) 1 0 0 1 1	0001	+1
▲ · · · · · · · · · · · · · · · · · · ·	0000	+0
	1000	-8
ignore	1001	-7
	1010	-6
	1011	-5
	1100	-4
	1101	-3
	1110	-2
	1111	-1

D) Example of 2's complement addition

	$b_3 b_2 b_1 b_0$	2's complement
$ \begin{array}{cccc} (-5) & 1 & 0 & 1 & 1 \\ + & (-2) & + & 1 & 1 & 1 & 0 \\ (-7) & 1 & 1 & 0 & 0 & 1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1011 1010 1011 1100 1101 1101	$+7\\+6\\+5\\+4\\+3\\+2\\+1\\+0\\-8\\-7\\-6\\-5\\-4\\-3\\-2$
	1111	-1

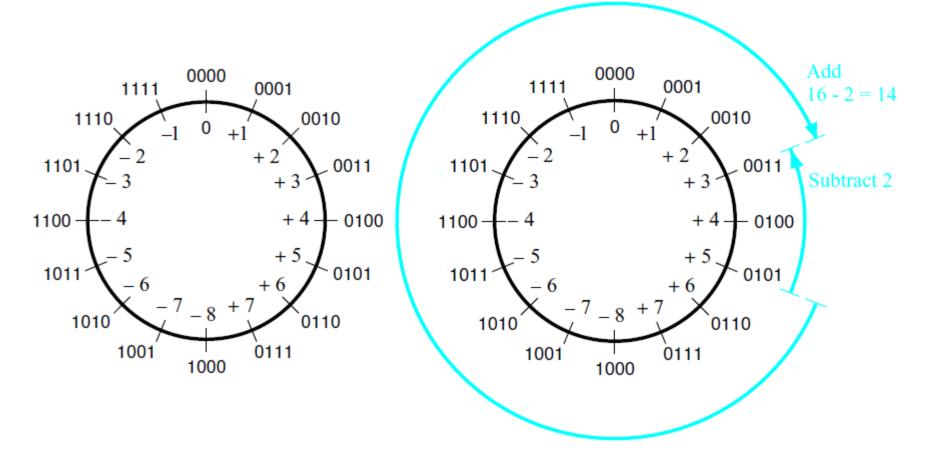




$$\begin{array}{ccc} (+5) & 0 \ 1 \ 0 \ 1 \\ - \ (-2) \\ (+7) \end{array} \xrightarrow{-1110} \xrightarrow{0101} \\ + \ 0 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 1 \ 1 \end{array}$$

$$\begin{array}{ccc} (-5) & 1 \ 0 \ 1 \ 1 \\ - \ (-2) \\ (-3) \end{array} \xrightarrow{-1110} \longrightarrow \begin{array}{c} 1 \ 0 \ 1 \ 1 \\ + \ 0 \ 0 \ 1 \\ 1101 \end{array}$$

Graphical interpretation of four-bit 2's complement numbers



(a) The number circle

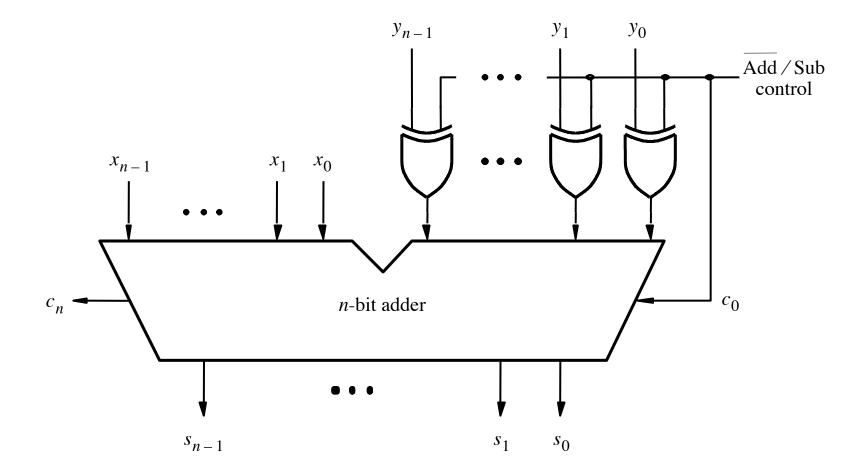
(b) Subtracting 2 by adding its 2's complement

Take-Home Message

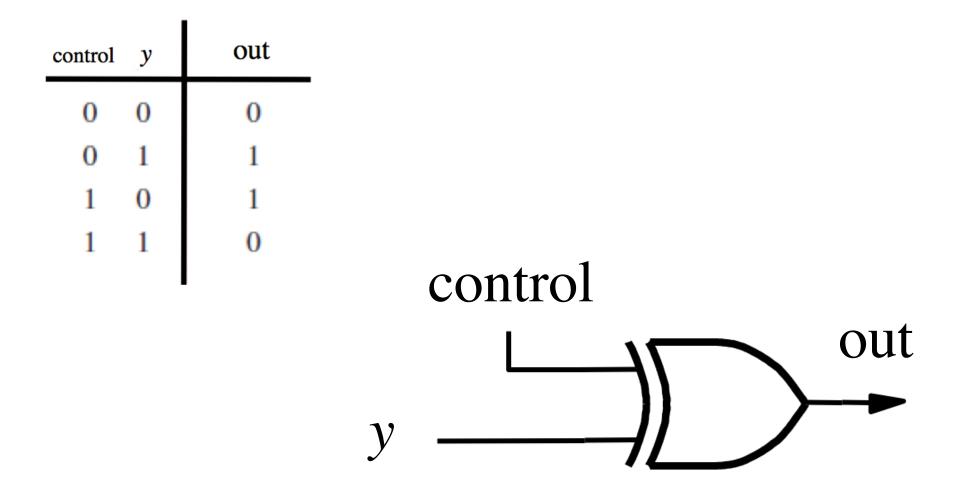
 Subtraction can be performed by simply adding the 2's complement of the second number, regardless of the signs of the two numbers.

• Thus, the same adder circuit can be used to perform both addition and subtraction !!!

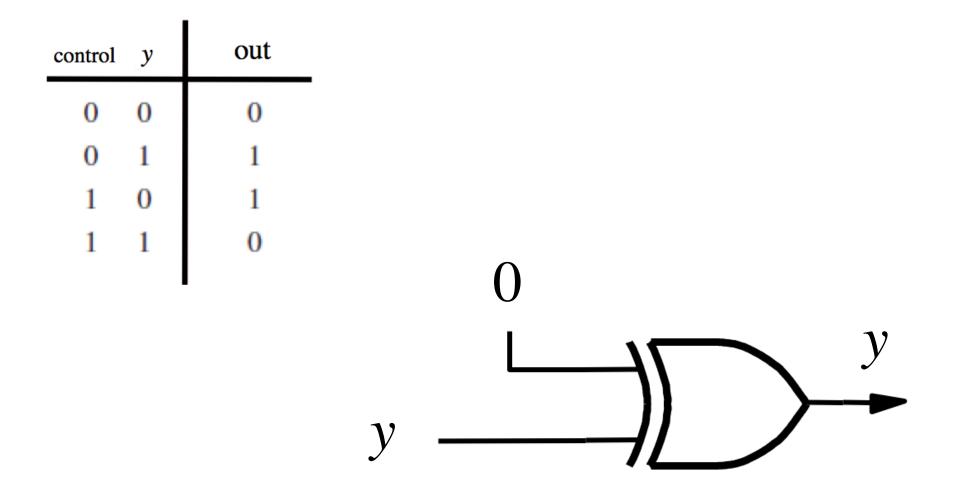
Adder/subtractor unit



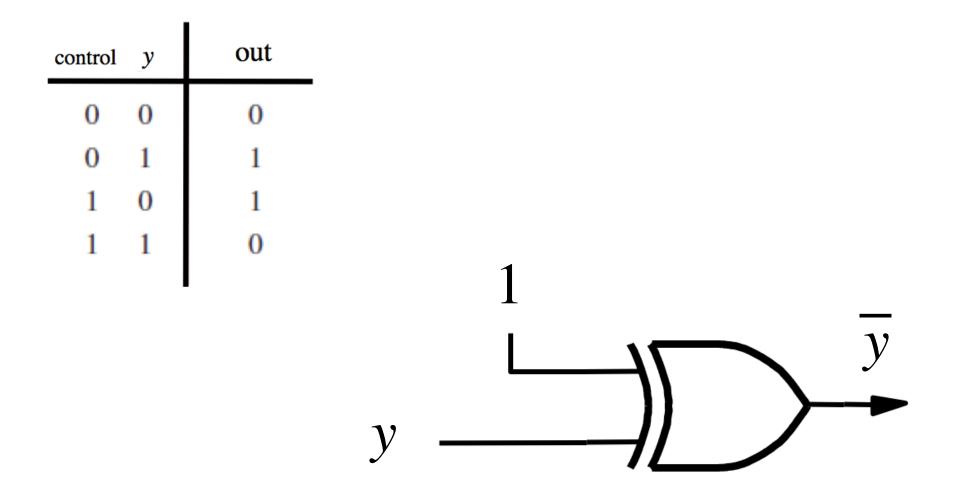
XOR Tricks



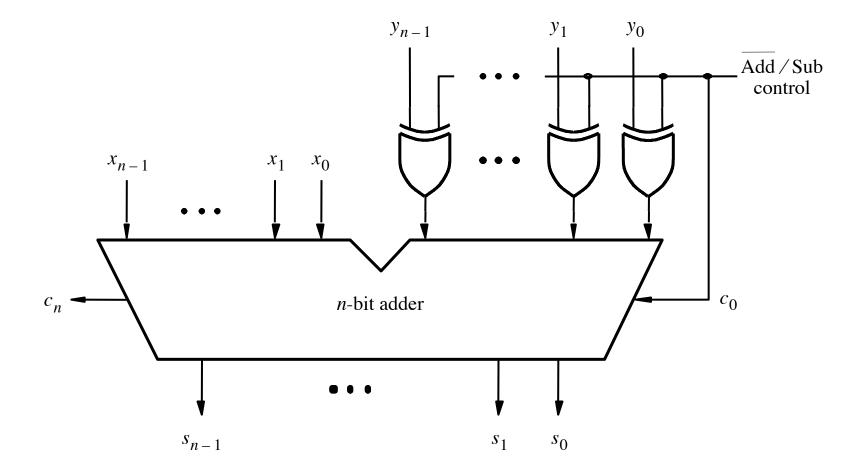
XOR as a repeater



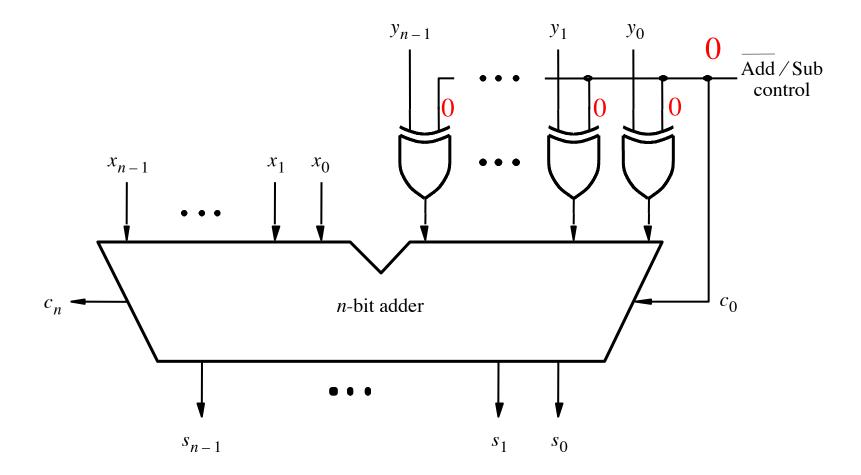
XOR as an inverter



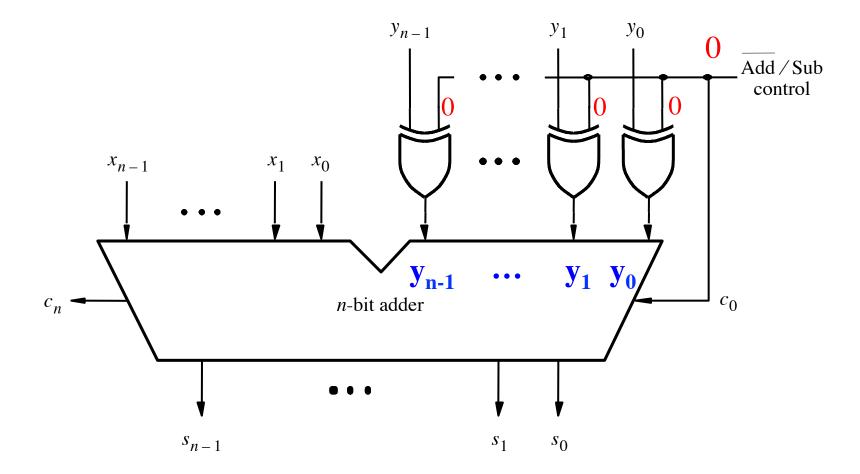
Addition: when control = 0

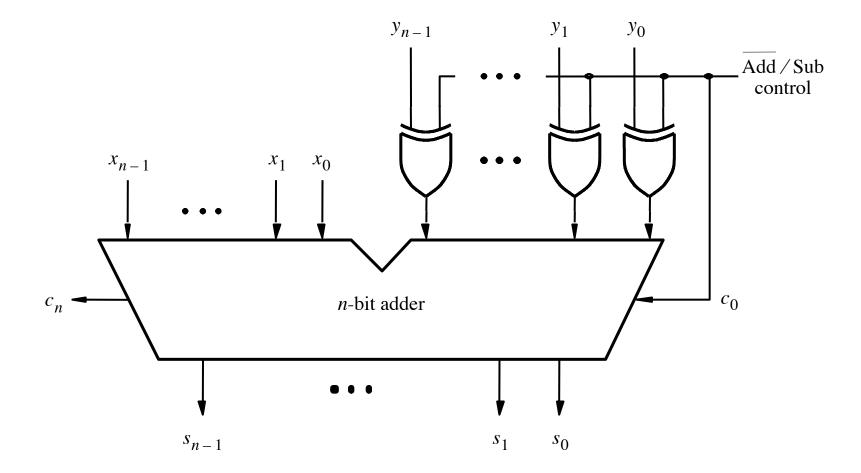


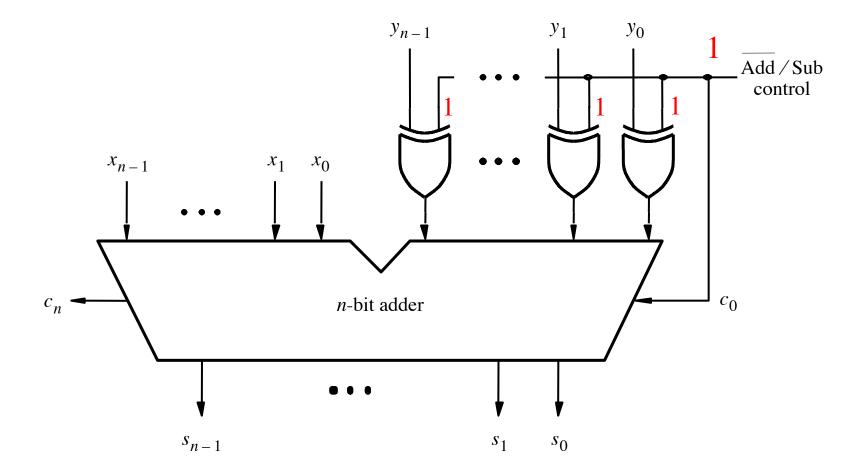
Addition: when control = 0

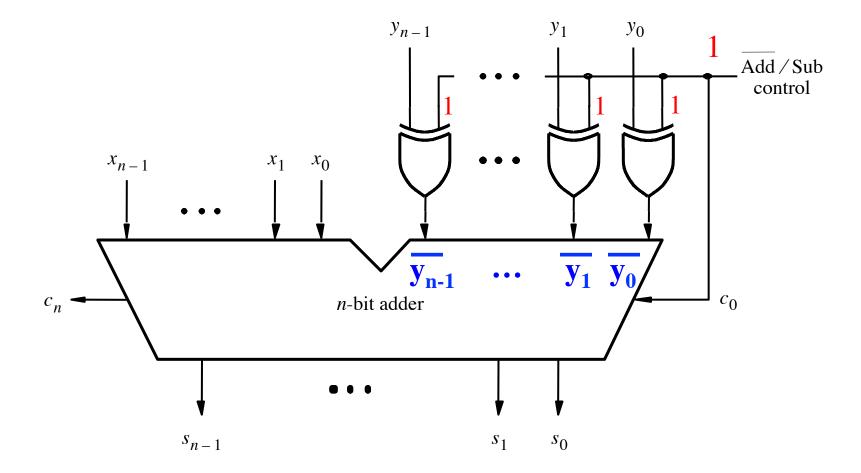


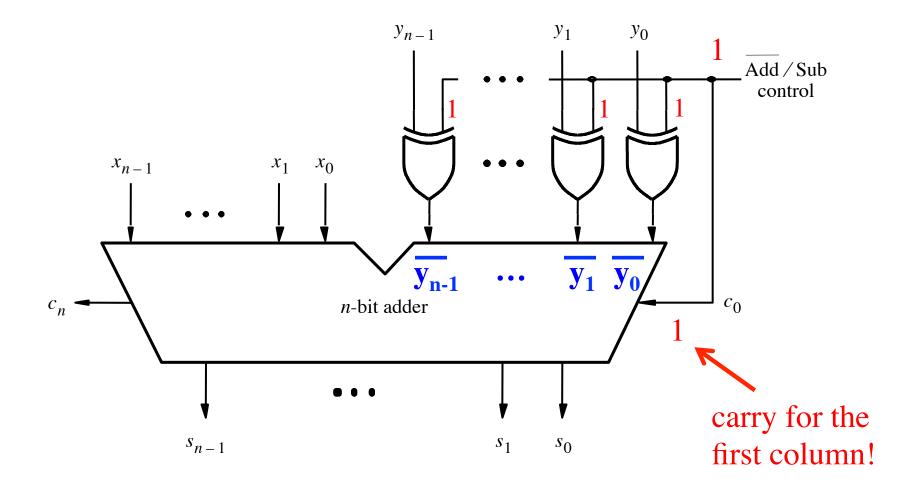
Addition: when control = 0



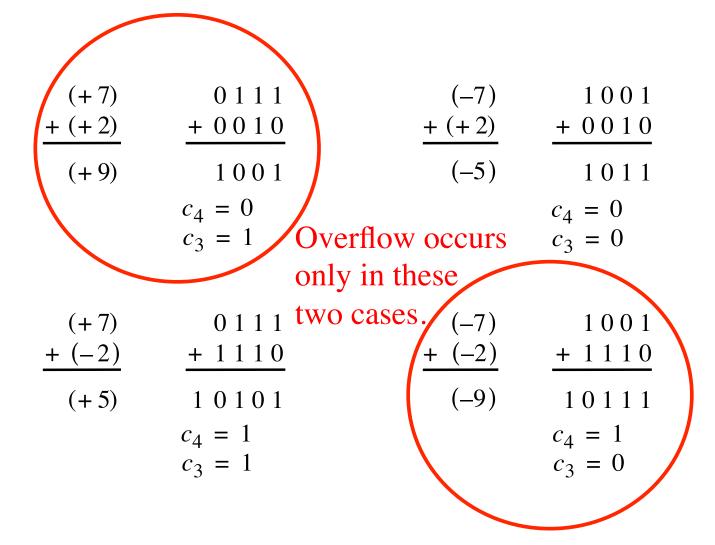


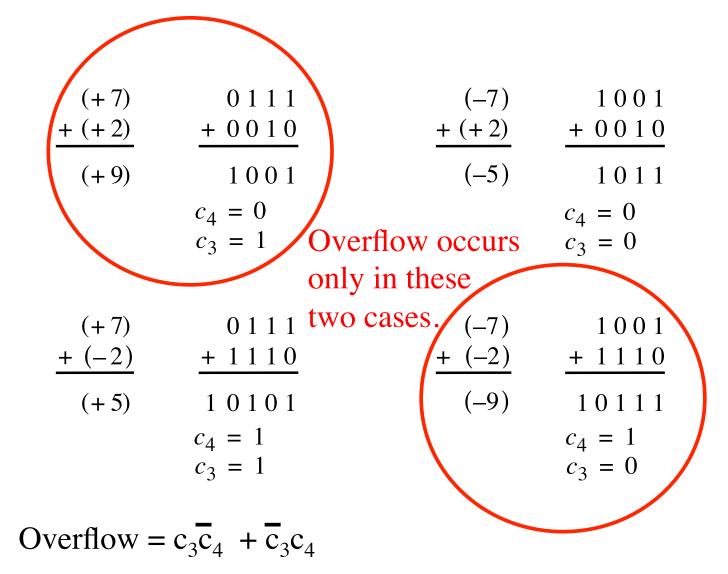


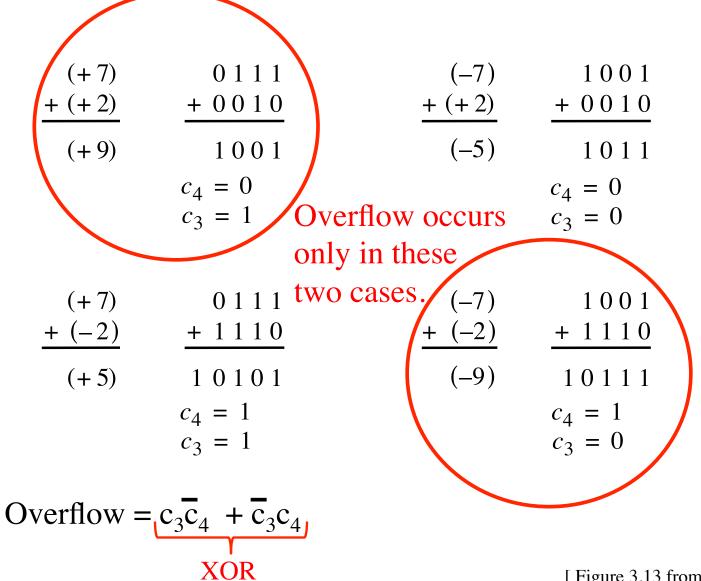




(+7) + (+2)	$\begin{array}{r} 0 \ 1 \ 1 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \end{array}$	(-7) + (+ 2)	1001 + 0010
(+9)	1001	(-5)	1011
	$c_4 = 0$ $c_3 = 1$		$c_4 = 0$ $c_3 = 0$
(+7) + (-2)	$\begin{array}{r} 0 \ 1 \ 1 \ 1 \\ + \ 1 \ 1 \ 1 \ 0 \end{array}$	(-7) + (-2)	1001 + 1110
(+ 5)	10101	(-9)	10111
	$c_4 = 1 \\ c_3 = 1$		$c_4 = 1 \\ c_3 = 0$







Calculating overflow for 4-bit numbers with only three significant bits

Overflow = $c_3\overline{c}_4 + \overline{c}_3c_4$ = $c_3 \oplus c_4$

Calculating overflow for n-bit numbers with only n-1 significant bits

Overflow = $c_{n-1} \oplus c_n$

Another way to look at the overflow issue

$$X = x_3 x_2 x_1 x_0$$
$$Y = y_3 y_2 y_1 y_0$$
$$S = s_3 s_2 s_1 s_0$$

Another way to look at the overflow issue

$$X = x_3 x_2 x_1 x_0$$
$$Y = y_3 y_2 y_1 y_0$$
$$S = s_3 s_2 s_1 s_0$$

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

 $Overflow = x_3 y_3 \overline{s}_3 + \overline{x}_3 \overline{y}_3 s_3$

Questions?

THE END