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Quick Review



The problems in which row are easier to calculate?

82 - 48 32
61 26 11
77 77 77

82 - 48 32
64 29 13

77 77 77



The problems in which row are easier to calculate?

]2 48 32

61 26 11

21 22 21
Why?

]2 48 32

64 ~ 29 13

18 19 19



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

= 82+ (100 -64) - 100



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

32 + (100 —64) - 100

82 + (99 + 1 — 64) - 100



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

32 + (100 —64) - 100

82 + (99 + 1 — 64) - 100

82 + (99 —-64) +1 - 100



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

= 82+ (100 -64) - 100

= 82+ (99 + 1 —64) - 100

Does not require borrows

= 82 +((99 — 64))+1 - 100



9’s Complement
(subtract each digit from 9)

99

64
35




10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64

35+1=36




Another Way to Do Subtraction

82 — 64 = 82+ (99 — 64) +1 - 100



Another Way to Do Subtraction

9’s complement

80 _ 64 = 82 +@—@+1 - 100




Another Way to Do Subtraction

9’s complement

80 _ 64 = 82 +@—@+1 - 100

= 82+35+1-100




Another Way to Do Subtraction

9’s complement

32 +@ —@H - 100
10’s complement
82 +@5 + - 100

32 — 64




Another Way to Do Subtraction

9’s complement

32 +@ —@H - 100
10’s complement
82 +@5 + - 100

82 + 36 = 100 // add the first two

32 — 64




Another Way to Do Subtraction

9’s complement

32 +@ —@H - 100
10’s complement
82 +@5 + - 100

82 + 36 = 100 // add the first two

1 1 8 = 100 // delete the leading 1
18

32 — 64







Formats for representation of integers

b, _1 by by
[ 3N N J
j Magnitude
MSB
(a) Unsigned number
b,_1 by s by by
[ N BN J
] e
Sign 1 agnitude
0 denotes +

1 denotes — MSB

(b) Signed number

[ Figure 3.7 from the textbook ]



Negative numbers can be represented in following ways

* Sign and magnitude
1’ s complement

2" s complement



’
1" s complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1" s complement representation K is obtained by
subtracting P from 2" — 1, namely

K=(Q2"-1)- P

This means that K can be obtained by inverting all bits of P.



Find the 1’ s complement of ...

0101 0010

0011 0111



Find the 1’ s complement of ...

0101 0010
1010 1101
0011 O111
1100 1000

Just flip 1's to O's and vice versa.



Example of 1’s complement addition

(+5)
+(+2) +

(+7)

OO
O —
—_O

O —

-
ek
[
ek



Example of 1’s complement addition

=5) 1010
+(+2) +0010
(-3) 1100

[ Figure 3.8 from the textbook ]



Example of 1’s complement addition
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0011

[ Figure 3.8 from the textbook ]



Example of 1’s complement addition

-5 1010

+(=2)  +1101
7) 10111

21

1000

[ Figure 3.8 from the textbook ]



2’ s complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2" s complement representation K is obtained by
subtracting P from 2" , namely

K=2"— P



Deriving 2’ s complement

For a positive n-bit number P, let K, and K, denote its 1" s
and 2’ s complements, respectively.

K,=(2"—1)-P
K,=2"—P

Since K, =K, + 1, it is evident that in a logic circuit the 2" s
complement can computed by inverting all bits of P and then
adding 1 to the resulting 1" s-complement number.



Find the 2’ s complement of ...

0101 0010

0011 0111



Find the 2’ s complement of ...

0101 0010
1011 1110
0011 0111

1101 1001



Quick Way to find 2’s complement

Scan the binary number from right to left
Copy all bits that are 0 from right to left
Stop at the first 1

Copy that 1 as well

Invert all remaining bits



Interpretation of four-bit signed integers

Sign and
b3babibg | magnitude | 1’s complement | 2’s complement
0111 +7 +7 +7
0110 +6 +6 +6
0101 +5 +5 +5
0100 +4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 +1 +1 +1
0000 +0 +0 +0
1000 —0 —7 —8
1001 —1 —6 -7
1010 —2 -5 —6
1011 —3 —4 —5
1100 —4 -3 —4
1101 —5 —2 -3
1110 —6 —1 —2
1111 —7 —0 —1

[ Table 3.2 from the textbook ]



Example of 2° s complement addition

(+95) 0101
+ (+2) +0010
(+7) 0111

[ Figure 3.9 from the textbook ]



Example of 2° s complement addition

(=5) 1011
+ (+2) + 0010
(-3) 1101

[ Figure 3.9 from the textbook ]



Example of 2° s complement addition

(+5)
+ (=2)

(+3)

0101
+ 1110

10011

A
|

ignore

[ Figure 3.9 from the textbook ]



Example of 2° s complement addition

(-5) 1011
+ (=2) +1110
(=7) 11001
!
ignore

[ Figure 3.9 from the textbook ]






Example of 2’ s complement subtraction

(+5) 0101 0101

—(+2) ~0010 —> +1110
(+3) 10011
A
|
ignore

[ Figure 3.10 from the textbook ]



Example of 2’ s complement subtraction

(-5) 1011 1011
—(+2) -0010 — + 1110
(=7) 11001
f
ignore

[ Figure 3.10 from the textbook ]



Example of 2’ s complement subtraction

(+5) 0101 0101
~ (-2) - 1110 —> +0010
(+7) 0111

[ Figure 3.10 from the textbook ]



Example of 2’ s complement subtraction

(=5) 1011 1011
- (=2) - 1110 :> + 0010
(-3) 1101

[ Figure 3.10 from the textbook ]



Graphical interpretation of four-bit 2’s
complement numbers

(a) The number circle (b) Subtracting 2 by adding its 2's complement

[ Figure 3.11 from the textbook ]



Take Home Message

« Subtraction can be performed by simply adding the
2’s complement of the second number, regardless of
the signs of the two numbers.

 Thus, the same adder circuit can be used to perform
both addition and subtraction !!!



Adder/subtractor unit

X1

Yn-1

A

Y1

Add /Sub

<

-

~

n-bit adder

:
/L

[ Figure 3.12 from the textbook ]

control



XOR Tricks

control y out

control

e pt



control Yy

out

XOR as a repeater



control Yy

out

XOR as an inverter



Addition: when control =0

Yn-1

A

Y1

Add /Sub

;

-

N

n-bit adder

:
/L

[ Figure 3.12 from the textbook ]

control



Addition: when control =0

Yn-1

1
Aidd/Sub

1 control
I} Jo

Xn-1 X1 Xo Q
. \/
Chn n-bit adder

VY
#m

[ Figure 3.12 from the textbook ]



Addition: when control =0

0o
.o o Add/Sub
control
b L
o v U-00
1 U Y \ | \/V ! |
Yoi 0 Y1 Yo

Ch n-bit adder €o

[ Figure 3.12 from the textbook ]



Subtraction: when control = 1

Yn-1

A

Y1

Add /Sub

;

-

N

n-bit adder

:
/L

[ Figure 3.12 from the textbook ]

control



Subtraction: when control = 1

E — N
Chn n-bit adder

Yn-1

? ..

Y1

Add /Sub

Jl

@
control
1

VY
#m

[ Figure 3.12 from the textbook ]



Subtraction: when control = 1

Yn-1

L9

Y1

Add /Sub

@
control
1

\/y—nl

n-bit adder

o

Y
#m

[ Figure 3.12 from the textbook ]



Subtraction: when control = 1

Yn-1

Y1
Add /Sub

control

Jl.

VY
#m

\ 1
yn 1 ° y
Chn n-bit adder
l oo o
Sn-1 51 S0

carry for the
first column!

[ Figure 3.12 from the textbook ]



Examples of determination of overflow

(+7) 0111 (=7) 1001
+ (+2) +0010 + (+2) + 0010
(+9) 1001 (=5) 1011
C4:O C4=
C3=1 c3:O
(+7) 0111 (=7) 1001
+ (=2) +1110 + (=2) + 1110
(+5) 10101 (-9) 10111
C4=1 Cy =
C3=1 C3=O

[ Figure 3.13 from the textbook ]



Examples of determination of overflow

(=7) 1001

+ (+2) + 0010

(=5) 1011
C4=0

Overflow occurs ¢; =0
only in these

(+7) 0111 tWO cases.
+ (-2) + 1110
(+95) 10101
C4=1
C3=1

[ Figure 3.13 from the textbook ]



Examples of determination of overflow

(=7) 1001

+ (+2) + 0010

(=5) 1011
C4=0

Overflow occurs ¢33 =0
only in these

(+7) 0111 tWO cases.
+ (-2) + 1110
(+95) 10101
C4=1
C3=1

Overflow =c;c, + c5¢4

[ Figure 3.13 from the textbook ]



Examples of determination of overflow

(=7) 1001

+ (+2) + 0010

(=5) 1011
C4=0

Overflow occurs ¢; =0
only in these

(+7) 0111 tWO cases.
+ (-2) + 1110
(+95) 10101
C4=1
C3=1

Overflow =c;c, + c5¢y,
|
XOR [ Figure 3.13 from the textbook ]




Calculating overflow for 4-bit numbers
with only three significant bits

Overflow = CAC4. 1 C3CH

~
~



Calculating overflow for n-bit numbers
with only n-1 significant bits

Overflow = ¢, 8B ¢,



Another way to look at the overflow issue

X = X3X2X1X0

A Y3iV2V1 VYo

S = 53525150



Another way to look at the overflow issue

X = X3X72X1X0
Y = y3Y2¥1Y0

S = 53525150

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

Overflow = x3y353 + X3y153



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.



The Full-Adder Circuit

)Cl- *®
y, . j/) > 5= X,®y,®c,
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[ Figure 3.3c from the textbook ]



The Full-Adder Circuit

Pr——

Si — x,@y,@ Ci

=) O
s

D— Ciyl = XY T X+ YC

URUAY

Let's take a closer look at this.

[ Figure 3.3c from the textbook ]



Decomposing the Carry Expression

Cirj =X )i+ X;C;+Y;C;



Decomposing the Carry Expression
Cir1=X; Y + X, C; 1Y, C;

Cir1=X; ¥; + (x; + y;)C;



Decomposing the Carry Expression
Cir1=X; Y + X, C; 1Y, C;

Cir1=X; ¥; + (x; + y;)C;

Vi

. >
LS ) D Cul




Another Way to Draw the Full-Adder Circuit
Ciri=X; Y T X; ¢ +)Y; ¢

Cir1=X; ¥; + (x; + y;)C;

Yi ! HD Si
L i >—L10"
—
|/




Another Way to Draw the Full-Adder Circuit

Cir1=X; ¥; + (x; + y;)C;

Yi ! HD Si
L i >—L10"
—
|/




Another Way to Draw the Full-Adder Circuit

ci+1

X;y; + (x;+ y;)c;
\_'_’ l ' |
8i Pi

C;

Yi ! HD Si
L i >—L10"
—
|/




Another Way to Draw the Full-Adder Circuit

g - generate p - propagate

C.

i+1 + (‘xi + yi,)ci

|
P;

X; Yi
\_'_I
8

Yi 1 HD Si
P; D—
5i _Di Civl

oly




Yet Another Way to Draw It (Just Rotate It)

o




Now we can Build a Ripple-Carry Adder

X0

Yo

80

X1 Y1
®»
f |
81 P
€1
€2
Stage 1
= g0 T PoCo s

2 = 81T P180 T+ P1PoCo

Y

J O

Po

Stage 0

S0

[ Figure 3.14 from the textbook ]



Now we can Build a Ripple-Carry Adder

X1 1

X0

Yo

o0 || OO

€1
)
¥ E)
—
Stage 1 Stage 0
C1 = &o T Poco °1
C2 = &1 T P18o + P1PoCo

S0

[ Figure 3.14 from the textbook ]



The delay is 5 gates (1+2+2)

V1 0 Yo

oQ
S
oQ
i

as




n-bit ripple-carry adder: 2n+1 gate delays

1 X0 Yo

oQ
S
oQ
i

s




Decomposing the Carry Expression

Cirj =X )i+ X;C;+Y;C;

Ci1=X; ;i + (X; + ¥;)c;
\_'_’ l ' |
8i Pi

Ci.1= 8 T D;C;
Ci,1=8& *+D;(81 +Pi1Ci1)

=8; TDi8i.1 tDPDi1Ci



Carry for the first two stages

C; = 8y TPpCy

C, = 81 T P18yt P1PyCy



The first two stages of a carry-lookahead adder

UV ol
2 UL o ] ’
U] 00

51 S0

[ Figure 3.15 from the textbook |



It takes 3 gate delays to generate c,

UV J U

sivAliRviv




It takes 3 gate delays to generate c,

UV J U

JU 10T




The first two stages of a carry-lookahead adder

oY J U

JU 0T




It takes 4 gate delays to generate s,

UV J U

sivAliRviv




It takes 4 gate delays to generate s,

olv J U

3

JU 00

e
o




N-bit Carry-Lookahead Adder

It takes 3 gate delays to generate all carry signals

It takes 1 more gate delay to generate all sum bits

Thus, the total delay through an n-bit
carry-lookahead adder is only 4 gate delays!



Expanding the Carry Expression
Civ1= 8 T D¢
C; = 8o T PoCy
C; = 81 T P18t PiPoCo

C3 = & T D281+ DP18o+ PP 1PoCo

Q
Co
ll

87 T P786T P7Ps85 T P7PePs584

T PPPsP483 T P7PPsP4P382

T PPePsPaP3P28 11 P7PsPsP4P3P2P 180
T P7PePsP4P3P2P 1P oCo



Expanding the Carry Expression
Civ1= 8 T D¢
C; = 8o T PoCy
C; = 81 T P18t PiPoCo

C3 = & T D281+ DP18o+ PP 1PoCo

87 T P786+ P7Ps85+ PPsP584
Even s akes T PPsPsP483 T P7PesPsP4P 382
only 3 gate delays

T PPsPsP4P3P28 1+ P7PsPsP4P3P 2P 18
T D7Dl sP4P3P2P1PoCo




A hierarchical carry-lookahead adder with
ripple-carry between blocks

X31-24 YV31-24 X15-8  Y15-8 X7_0 Y7-0
y Y Y Y Y y
Cg
C3p) ~— Blgck ~— o e Clg~—T Bl(l)ck ~— Bl(o)ck ~ ¢
531-24 S15-8 57-0

[ Figure 3.16 from the textbook |



A hierarchical carry-lookahead adder

X31-24 Y31-24

|

|

X15-8

|

Y15-8

|

X7-0 Y7-0

| |

Block @ 0606 = Block | < Block | g o co

3 Coy 1 0
G;| P3 Gy P, Gy| Py

$31-24 cee S15-8 S7_0

o 0o o 0 0 . J
o 00 . . ]
L | vy [_- yv.\y vy
g b e ]
€32 C16 €3
[ ]

Second-level lookahead

[ Figure 3.17 from the textbook ]



The Hierarchical Carry Expression

Cs = 87 T P86+ P7Ps85 T P7PsP584
T PPPsP483 T P7PPsP4P382
T PPePsPaP3P28 11 P7PsPsP4P3P2P 180
T P7PPsP4P3P2P 1PoCo



The Hierarchical Carry Expression

Cs =|87 T P786+ P85+ P7PeP584
T PPsPsP483 T P7PsPsP4P 382
+ PPPsP4P3P28 1+ P7PsPsP4P3P 2P 180

HPPPsPaP3P2P 1PoCo




The Hierarchical Carry Expression

Cs =|87 T P786+ P85+ P7PeP584
ST DPPP5P483 T P7PsPsPaP382
+ PPPsP4P3P28 1+ P7PsPsP4P3P 2P 180

PP PsPaP3P2P 1PoCo




The Hierarchical Carry Expression

Cs =|87 T P786+ P85+ P7PeP584
ST DPPP5P483 T P7PsPsPaP382
+ PPPsP4P3P28 1+ P7PsPsP4P3P 2P 180

PP PsPaP3P2P 1PoCo

PO—'

ce = G, + Pyc,



The Hierarchical Carry Expression
cs = G, + P,c,

c, s = G; +P,cg
= G, +P,G,+ P,P,c,

c;, =G; +P;G, + P;P,G,+ P;P,P,G,+ P;P,P,P,c,



A hierarchical carry-lookahead adder

X31-24 Y31-24

|

|

X15-8

|

Y15-8

|

X7-0 Y7-0

| |

Block @ 0606 = Block | < Block | g o co

3 Coy 1 0
G;| P3 Gy P, Gy| Py

$31-24 cee S15-8 S7_0

o 0o o 0 0 . J
o 00 . . ]
L | vy [_- yv.\y vy
g b e ]
€32 C16 €3
[ ]

Second-level lookahead

[ Figure 3.17 from the textbook ]



Block 2

Hierarchical
CLA Adder
Carry Logic

Block 1

SECOND
LEVEL
HIERARCHY
C8 -5 gate delays
C16 - 5 gate delays
C24 - 5 Gate delays
C32 - 5 Gate delays
Block 3

p; C17
g1z

Block 2

Block 1

FIRST LEVEL HIERARCHY




Block 2

Hierarchical
CLA

Critical Path

Block 1

SECOND
LEVEL
HIERARCHY
C9 -7 gate delays
C17 -7 gate delays
C25 - 7 Gate delays
Block 3

Block 2

Block 1

>
51T
%
N
o

FIRST LEVEL HIERARCHY




Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

* Is 8 gates
= 3 to generate all Gj and Pj
= +2 to generate c8, c16, c24, and c32
= +2 to generate internal carries in the blocks
= +1 to generate the sum bits (one extra XOR)



Questions?



THE END



