

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplication

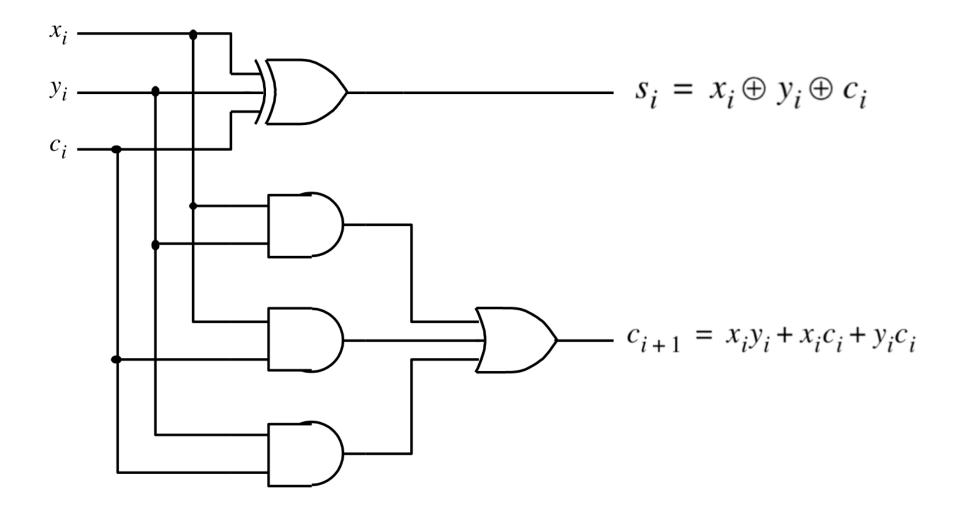
CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW 6 is out
- It is due on Monday Oct 12 @ 4pm

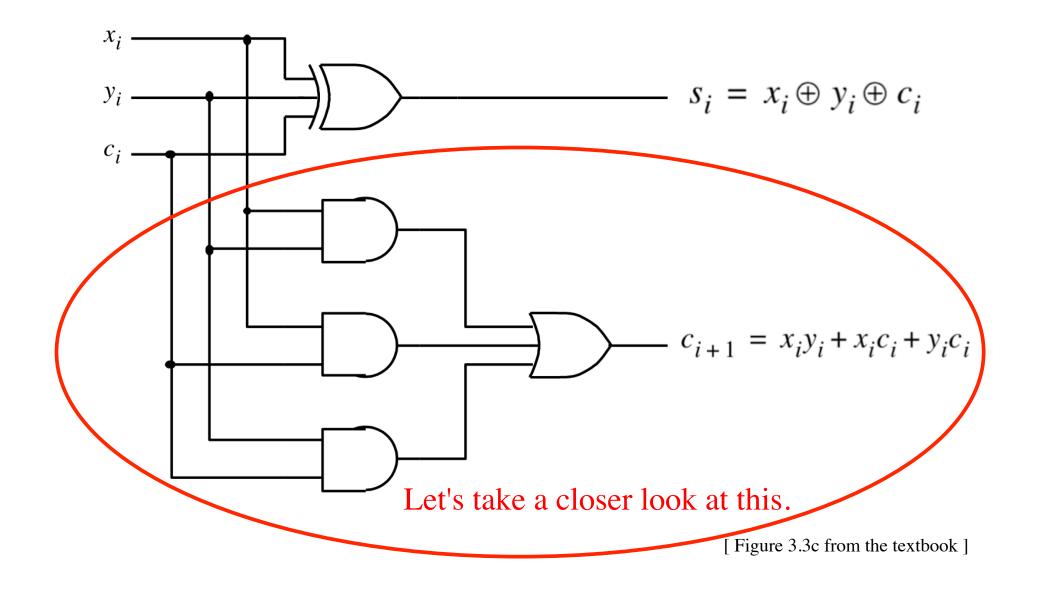
Quick Review

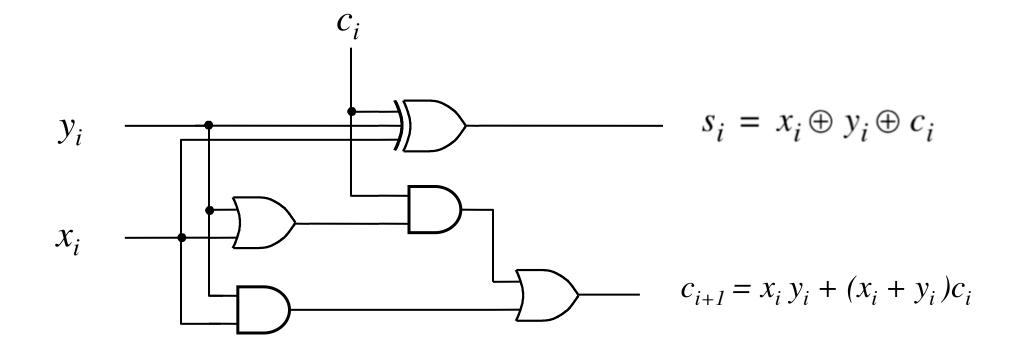
The Full-Adder Circuit



[Figure 3.3c from the textbook]

The Full-Adder Circuit





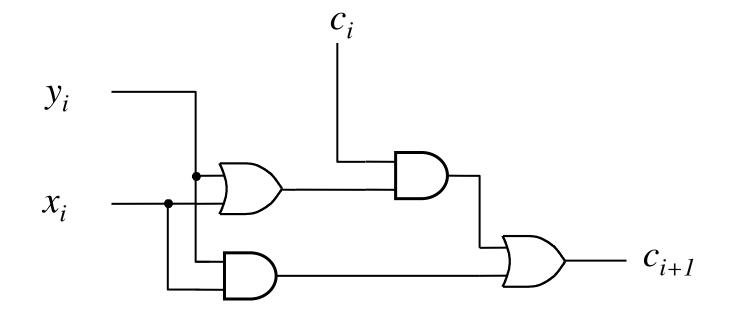
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

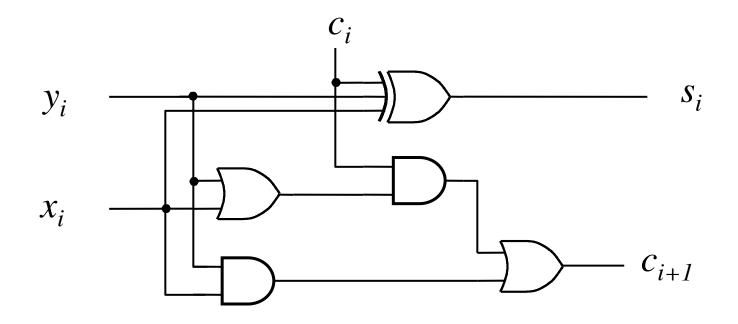
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

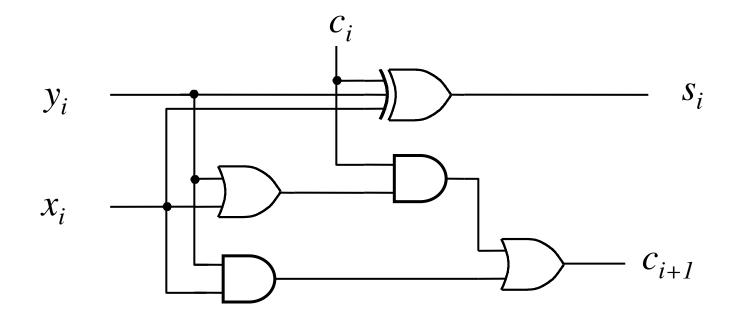


$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

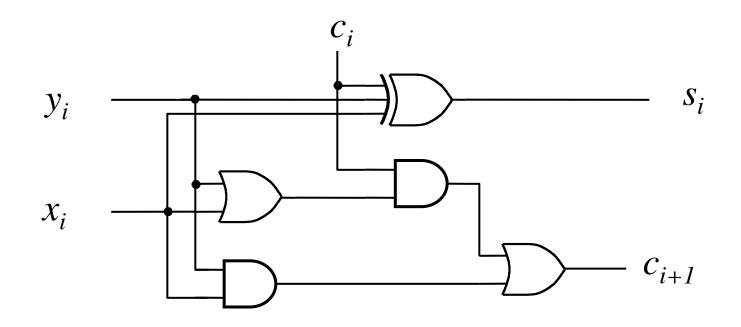
 $c_{i+1} = x_i y_i + (x_i + y_i) c_i$



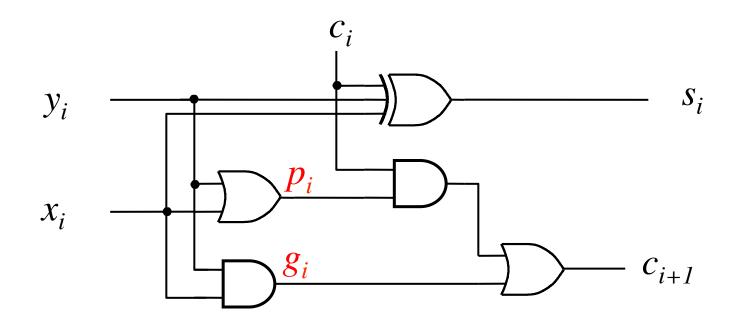
$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$



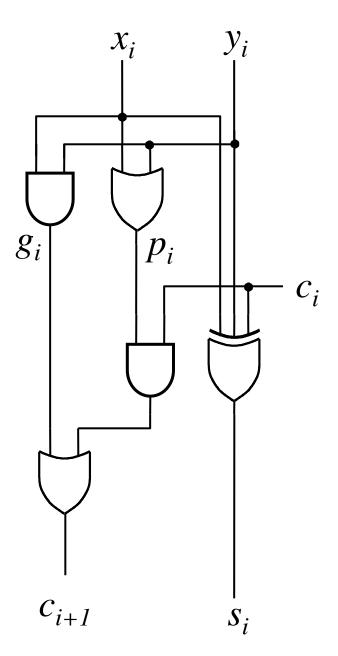
$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$



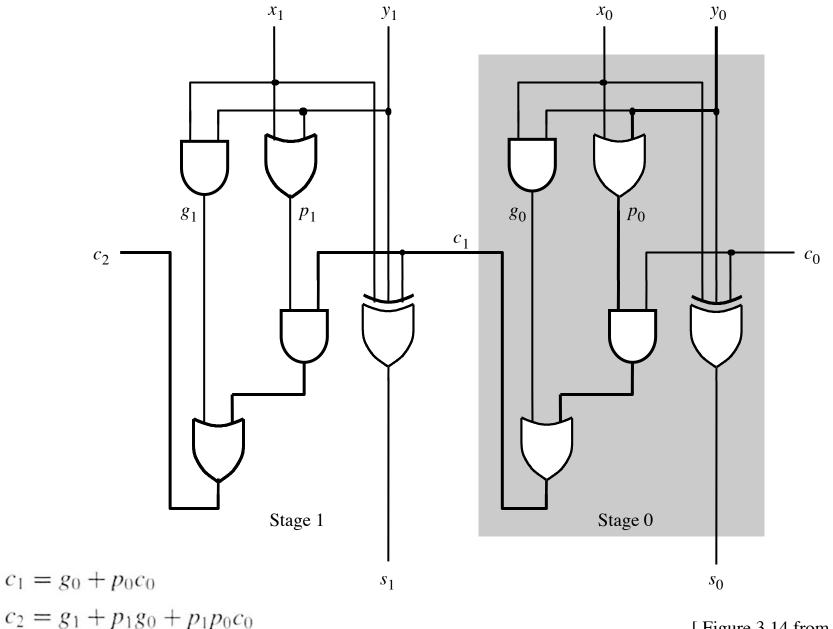
$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$



Yet Another Way to Draw It (Just Rotate It)

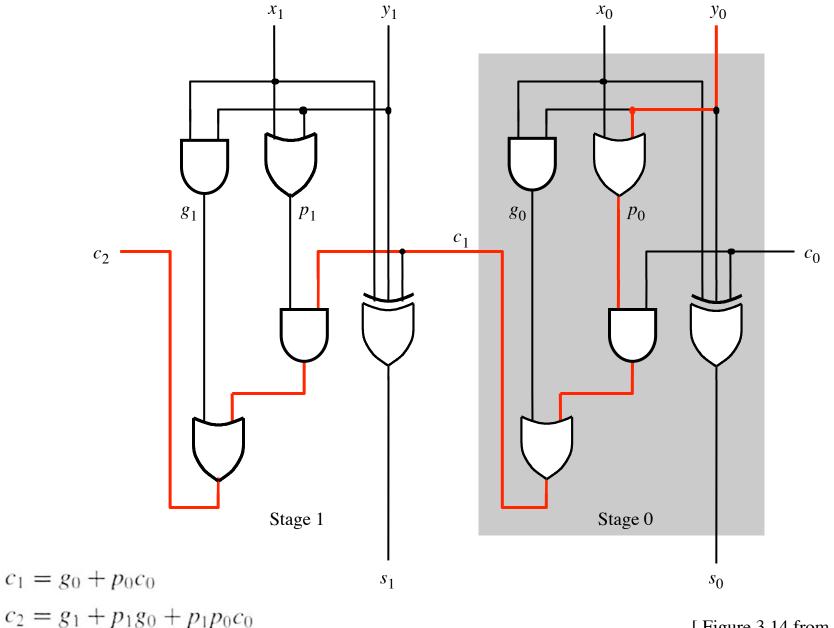


Now we can Build a Ripple-Carry Adder



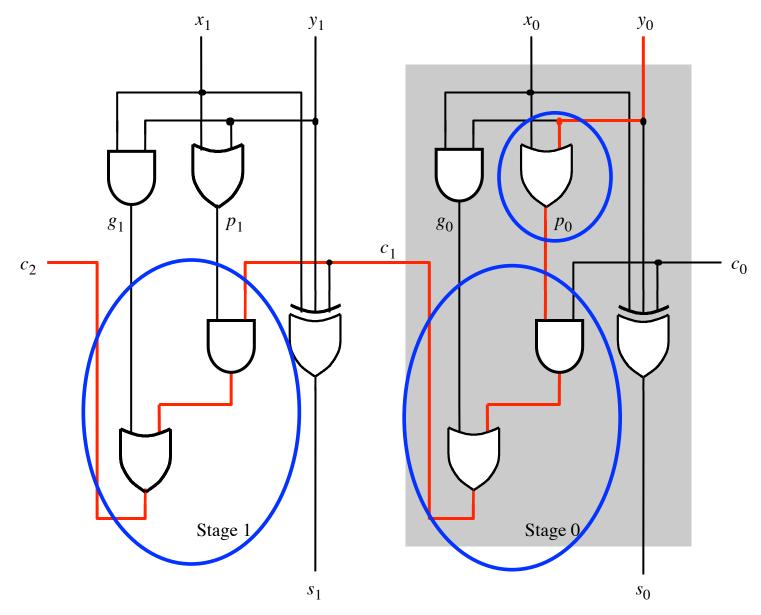
[Figure 3.14 from the textbook]

Now we can Build a Ripple-Carry Adder

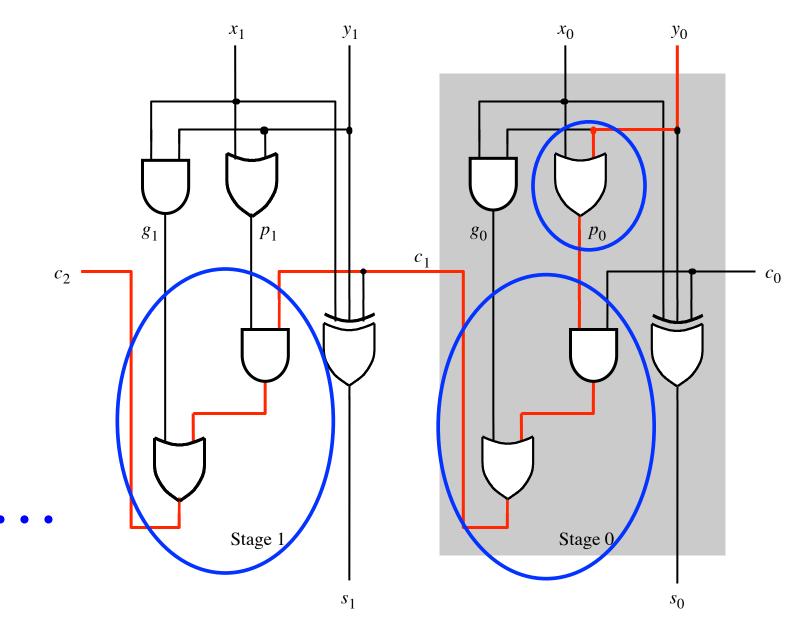


[Figure 3.14 from the textbook]

The delay is 5 gates (1+2+2)



n-bit ripple-carry adder: 2n+1 gate delays



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$
$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$
$$g_i = p_i$$

$$c_{i+1} = g_i + p_i c_i$$

$$c_{i+1} = g_i + p_i(g_{i-1} + p_{i-1}c_{i-1})$$

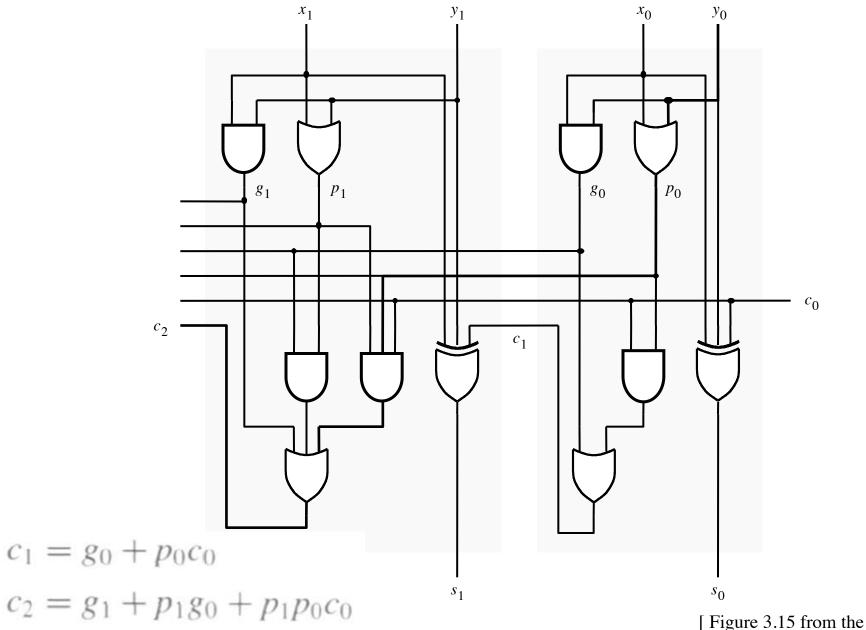
 $= g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$

Carry for the first two stages

$$c_1 = g_0 + p_0 c_0$$

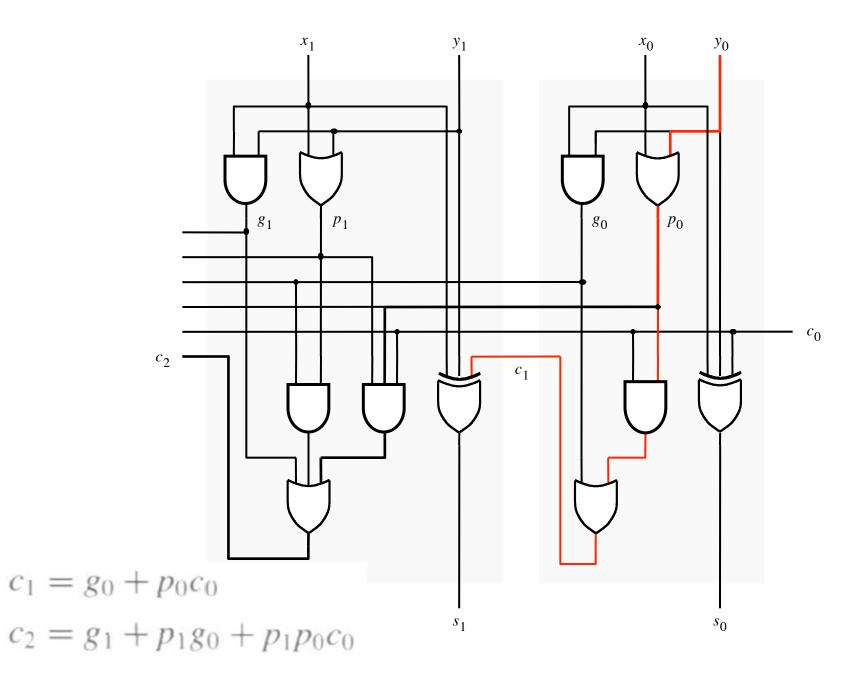
$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

The first two stages of a carry-lookahead adder

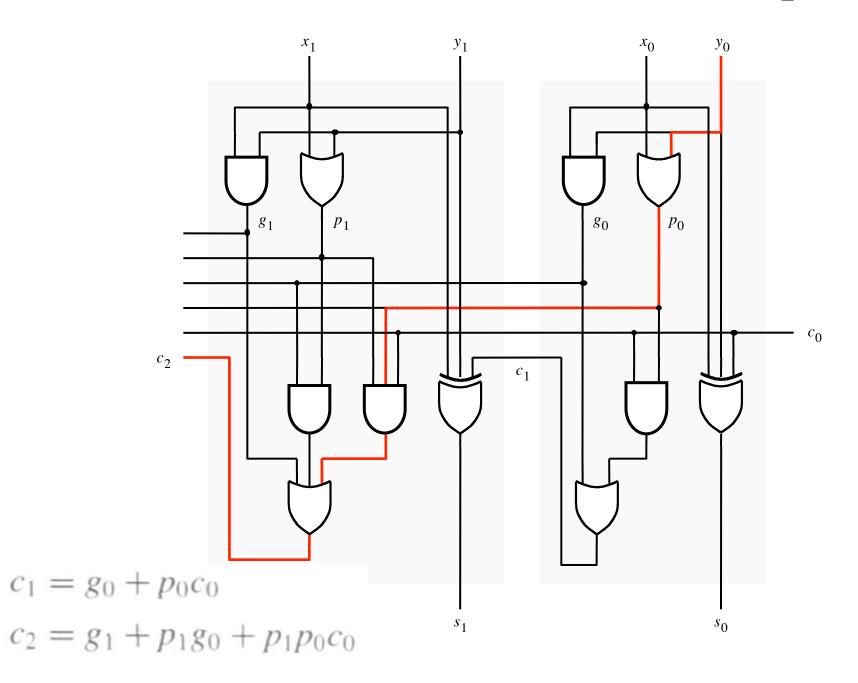


[Figure 3.15 from the textbook]

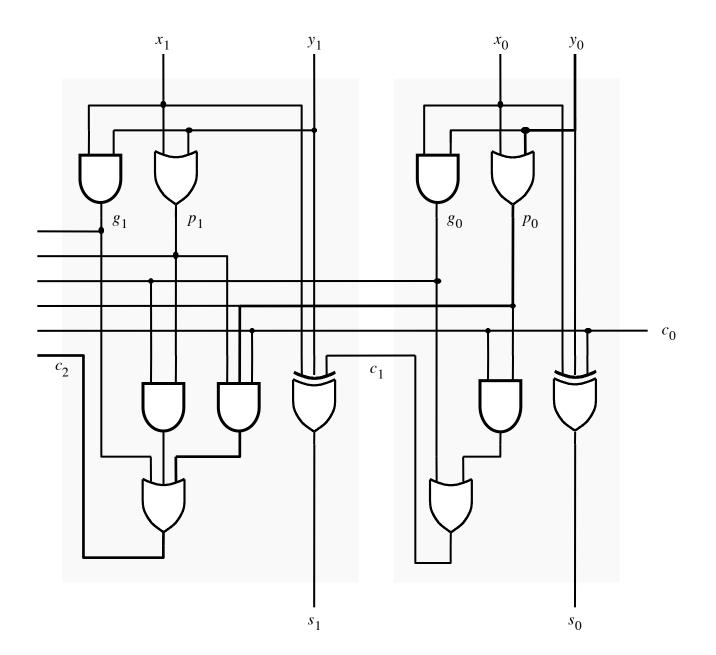
It takes 3 gate delays to generate c₁



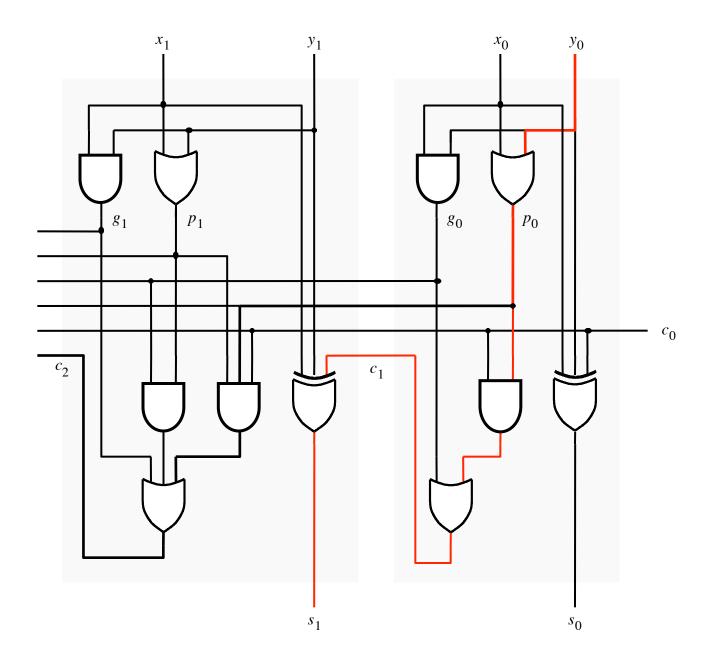
It takes 3 gate delays to generate c₂



The first two stages of a carry-lookahead adder



It takes 4 gate delays to generate s₁



It takes 4 gate delays to generate s₂



N-bit Carry-Lookahead Adder

- It takes 3 gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

$$c_{i+1} = g_i + p_i c_i$$

- $c_1 = g_0 + p_0 c_0$
- $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
- $c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$...
- $c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$ $+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$ $+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$ $+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$

Expanding the Carry Expression

$$c_{i+1} = g_i + p_i c_i$$

 $c_1 = g_0 + p_0 c_0$

 $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$

 $c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$

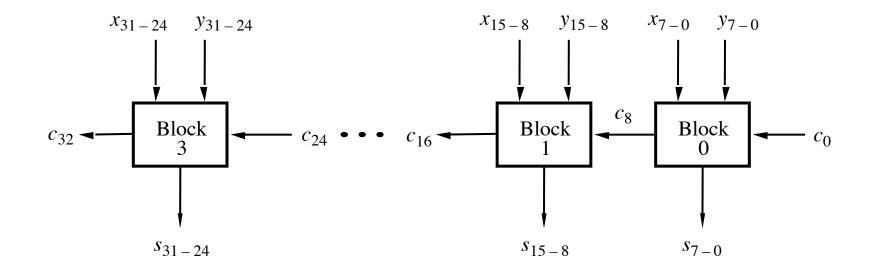
 $c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$

Even this takes $+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$ only 3 gate delays.

only 3 gate delays + $p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$

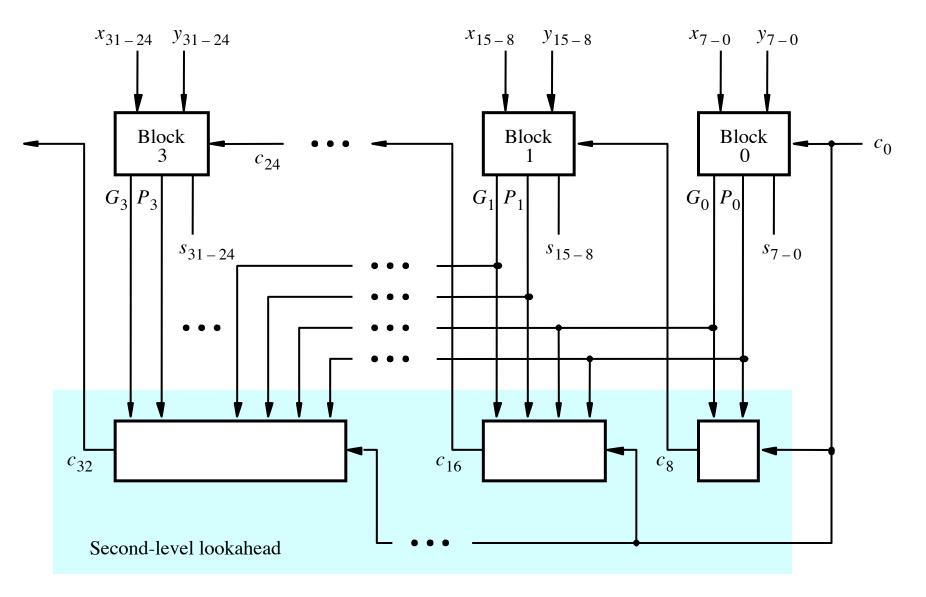
 $+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$

A hierarchical carry-lookahead adder with ripple-carry between blocks



[Figure 3.16 from the textbook]

A hierarchical carry-lookahead adder



[Figure 3.17 from the textbook]

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$

+ $p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$
+ $p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$
+ $p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4} + p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4}$$

$$+ p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$P_{0}$$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4}$$

$$+ p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$P_{0}$$

$$c_8 = G_0 + P_0 c_0$$

The Hierarchical Carry Expression

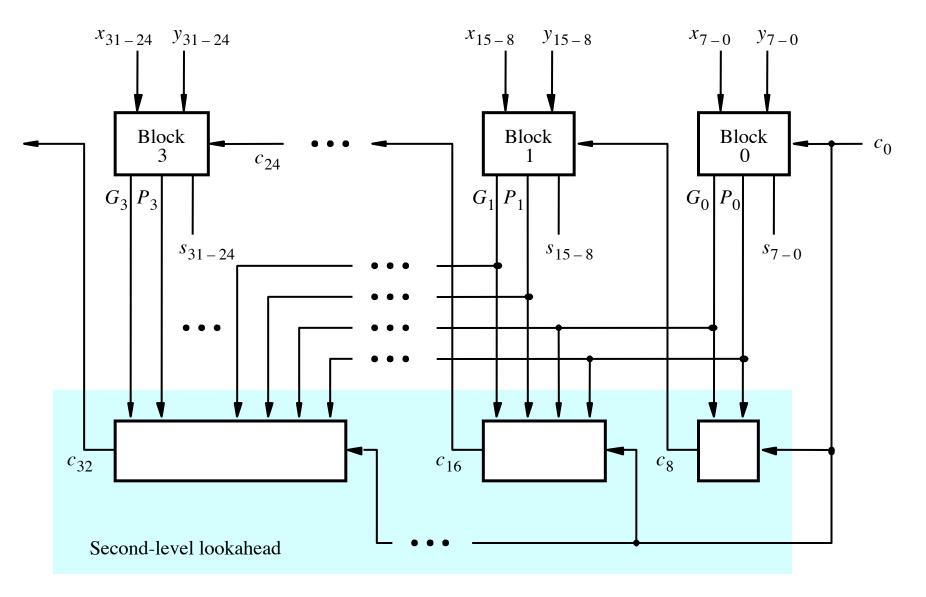
$$c_8 = G_0 + P_0 c_0$$

$$c_{16} = G_1 + P_1 c_8 = G_1 + P_1 G_0 + P_1 P_0 c_0$$

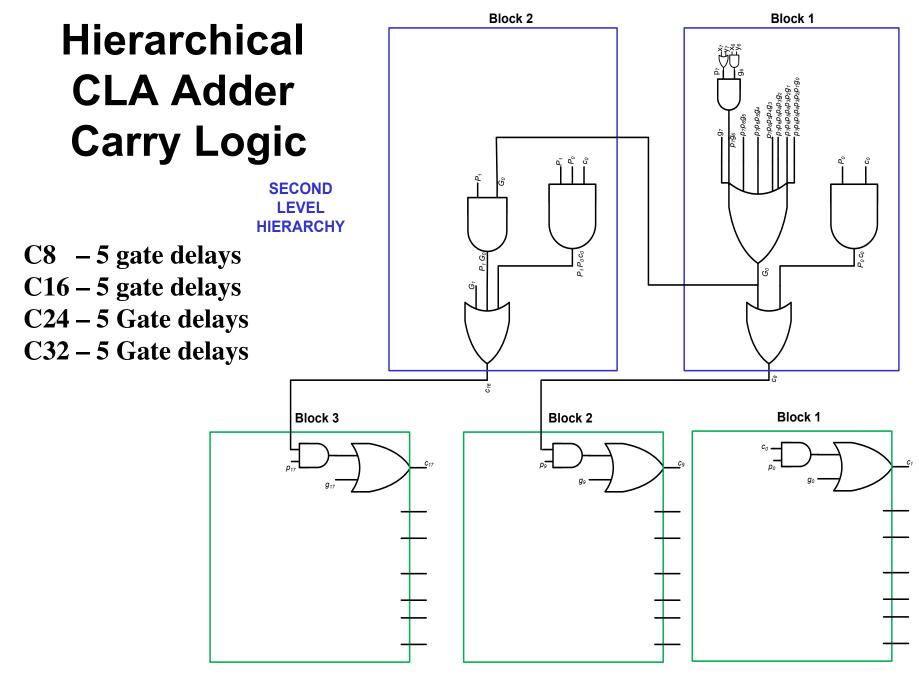
$$c_{24} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$$

 $c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0$

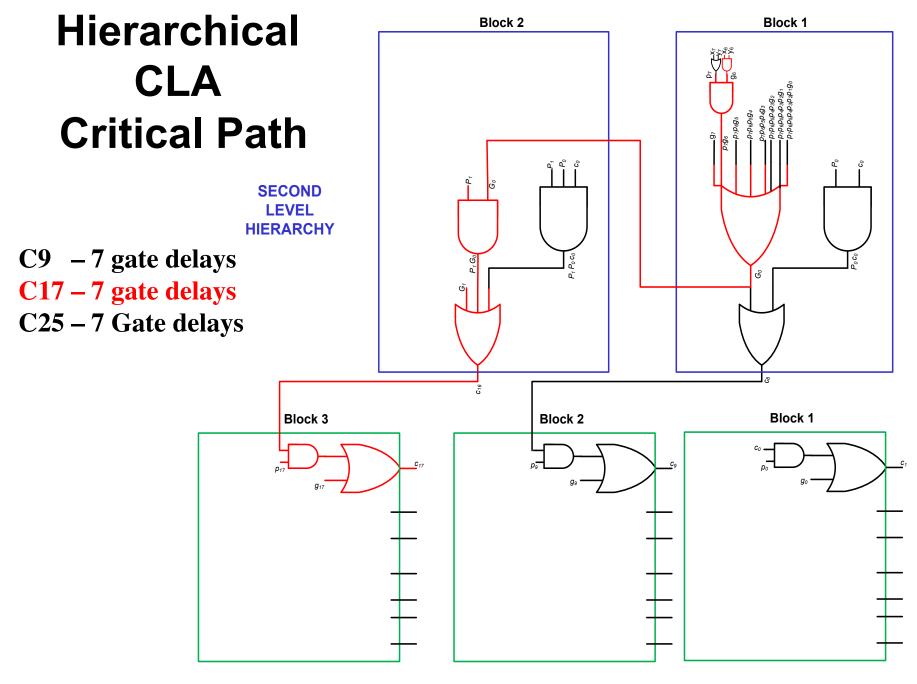
A hierarchical carry-lookahead adder



[Figure 3.17 from the textbook]



FIRST LEVEL HIERARCHY



FIRST LEVEL HIERARCHY

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

Is 8 gates

- 3 to generate all Gj and Pj
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = ?

542 x 10 = ?

1245 x 10 = ?

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = 40

542 x 10 = 5420

1245 x 10 = 12450

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 $4 \times 10 = 40$

542 x 10 = 5420

 $1245 \times 10 = 12450$

You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by 10?

14 / 10 = ?

540 / 10 = ?

1240 x 10 = ?

Decimal Division by 10

What happens when we divide a number by 10?

14 / 10 = 1 //integer division

540 / 10 = 54

1240 x 10 = 124

You simply delete the rightmost number

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number

What happens when we multiply a number by 4?

011 times 4 = ?

101 times 4 = ?

110011 times 4 = ?

What happens when we multiply a number by 4?

011 times 4 = 01100

101 times 4 = 10100

110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left

Binary Multiplication by 2^N

What happens when we multiply a number by 2^{N} ?

011 times 2^N = 01100...0 // add N zeros

101 times 4 = 10100...0 // add N zeros

110011 times 4 = 11001100...0 // add N zeros

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = ?

1010 divides by 2 = ?

110011 divides by 2 = ?

Binary Division by 2

What happens when we divide a number by 2?

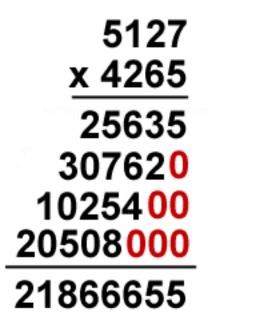
0110 divided by 2 = 011

1010 divides by 2 = 101

110011 divides by 2 = 11001

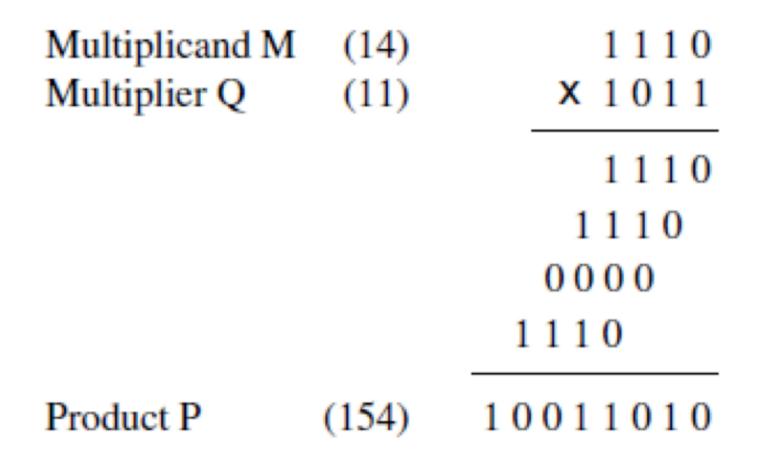
You simply delete the rightmost number

Decimal Multiplication By Hand



[http://www.ducksters.com/kidsmath/long_multiplication.php]

Binary Multiplication By Hand



[Figure 3.34a from the textbook]

Binary Multiplication By Hand

Multiplicand M Multiplier Q	(14) (11)	1110 × 1011
Partial product 0		1110 + 1110
Partial product 1		$ \begin{array}{c c} 10101 \\ + 0000 \end{array} $
Partial product 2		01010 + 1110
Product P	(154)	10011010

Binary Multiplication By Hand

A L. Feignificani	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Partial product 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Partial product 1	$PP1_5 PP1_4 PP1_3 PP1_2 PP1_1$
	$+ m_3 q_2 m_2 q_2 m_1 q_2 m_0 q_2$
Partial product 2	$PP2_6 PP2_5 PP2_4 PP2_3 PP2_2$
	$+ m_3 q_3 m_2 q_3 m_1 q_3 m_0 q_3$
Product P	$p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0$

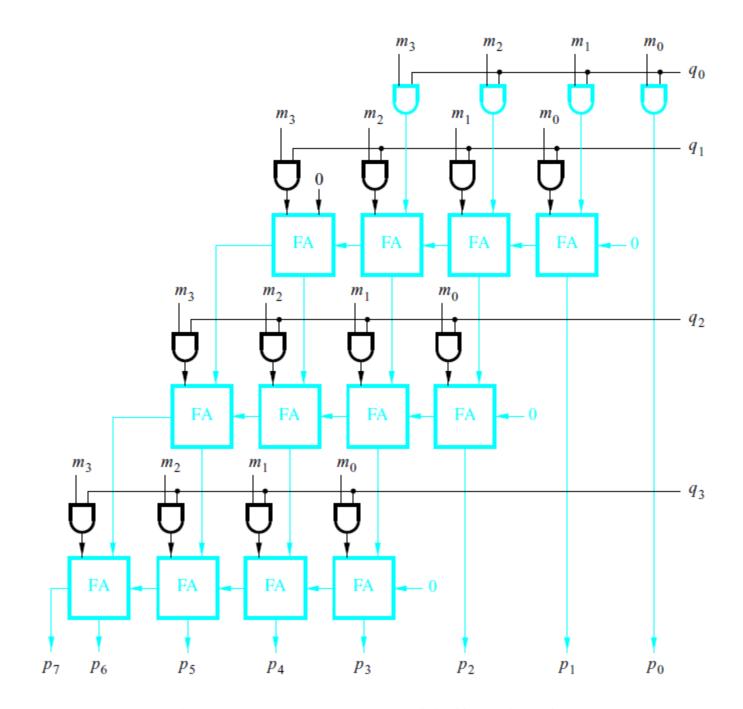


Figure 3.35. A 4x4 multiplier circuit.

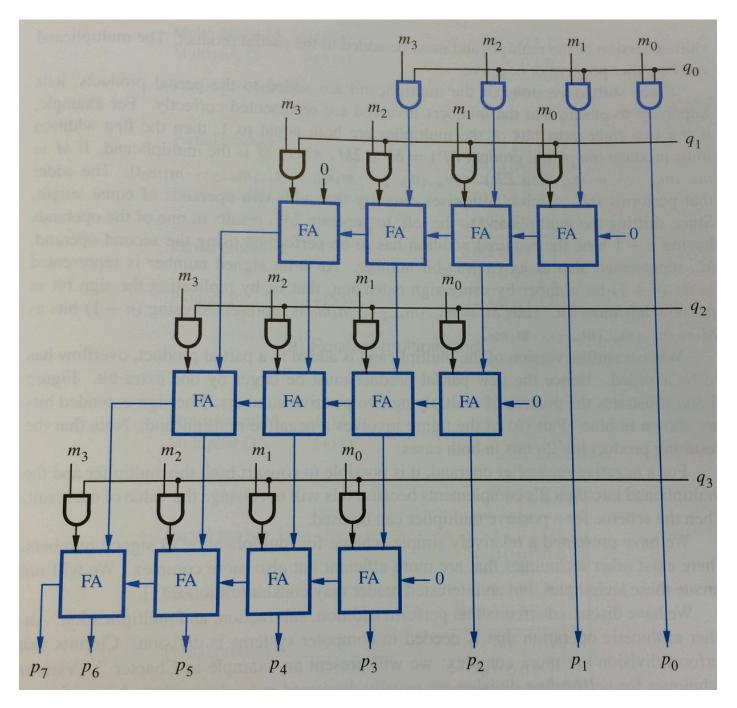


Figure 3.35. A 4x4 multiplier circuit.

Positive Multiplicand Example

Multiplicand M Multiplier Q	(+14) (+11)	01110 × 01011
Partial product 0		$\begin{array}{c} 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ + & 0 & 0 & 1 & 1 & 1 & 0 \end{array}$
Partial product 1		$ \begin{array}{r} 0 0 1 0 1 0 1 \\ + 0 0 0 0 0 0 \\ \end{array} $
Partial product 2		
Partial product 3		$ \frac{+001110}{0010011} \\ + 000000 $
Product P	(+154)	0010011010

[Figure 3.36a in the textbook]

Positive Multiplicand Example

Multiplicand M Multiplier Q	(+14) (+11)	01110 x 01011
Partial product 0	add an extra bit to avoid overflow	$ \begin{array}{r} 0 \\ 0 \\ + \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ \end{array} $
Partial product 1		$\begin{array}{c} 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ + & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}$
Partial product 2		0001010 + 0011110
Partial product 3	+	0010011 000000
Product P	(+154)	0010011010

[Figure 3.36a in the textbook]

Negative Multiplicand Example

Multiplicand M Multiplier Q	(–14) (+11)	10010 × 01011
Partial product 0		$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{array} $
Partial product 1		$ \begin{array}{r} 1 1 0 1 0 1 1 \\ + 0 0 0 0 0 0 \\ \end{array} $
Partial product 2		$ \begin{array}{r} 1 1 1 0 1 0 1 \\ + 1 1 0 0 1 0 \end{array} $
Partial product 3		$ \begin{array}{r} 1101100 \\ + 000000 \end{array} $
Product P	(-154)	1101100110

[Figure 3.36b in the textbook]

Negative Multiplicand Example

Multiplicand M Multiplier Q	(-14) (+11)	10010 × 01011
Partial product 0	add an extra bit to avoid overflow	$ \begin{array}{r} 1 1 1 0 0 1 0 \\ + 1 1 0 0 1 0 \end{array} $
Partial product 1	but now it is 1	$ \frac{1101011}{+000000} $
Partial product 2	+	1110101 - 110010
Partial product 3	+	1101100 000000
Product P	(-154)	1101100110

[Figure 3.36b in the textbook]

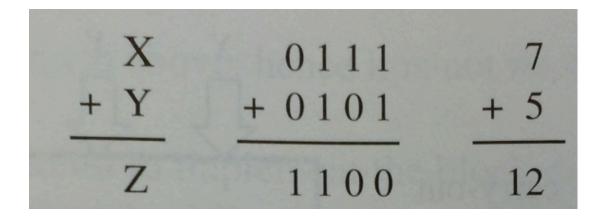
What if the Multiplier is Negative?

- Convert both to their 2's complement version
- This will make the multiplier positive
- Then Proceed as normal
- This will not affect the result
- Example: $5^{*}(-4) = (-5)^{*}(4) = -20$

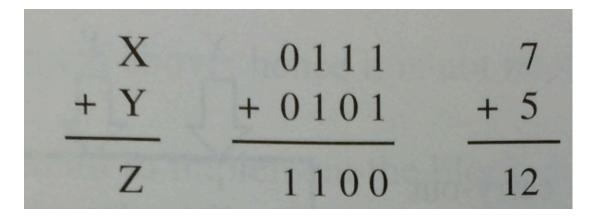
Binary Coded Decimal

Table of Binary-Coded Decimal Digits

BCD code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

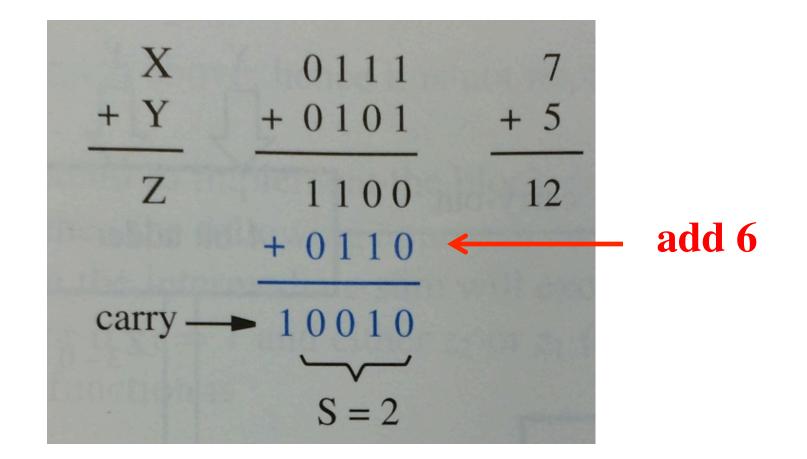


[Figure 3.38a in the textbook]

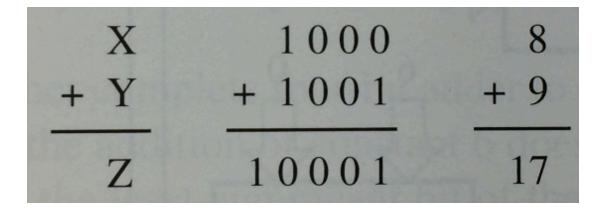


The result is greater than 9, which is not a valid BCD number

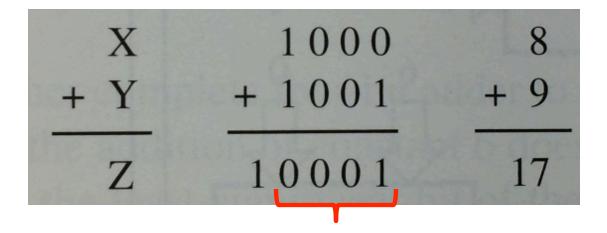
[Figure 3.38a in the textbook]



[Figure 3.38a in the textbook]



[Figure 3.38b in the textbook]



The result is 1, but it should be 7

[Figure 3.38b in the textbook]

Addition of BCD digits



Why add 6?

• Think of BCD addition as a mod 16 operation

• Decimal addition is mod 10 operation

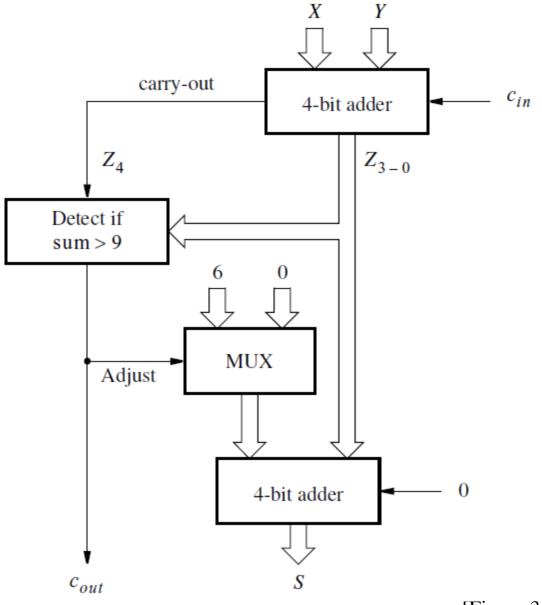
BCD Arithmetic Rules

Z = X + Y

If Z <= 9, then S=Z and carry-out = 0

If Z < 9, then S=Z+6 and carry-out =1

Block diagram for a one-digit BCD adder



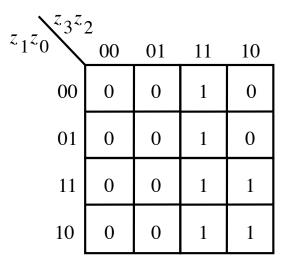
- 7 0111
- 8 1000
- 9 1001
- 10 1010
- 11 1011
- 12 1100
- 13 1101
- 14 1110
- 15 1111

A four-variable Karnaugh map

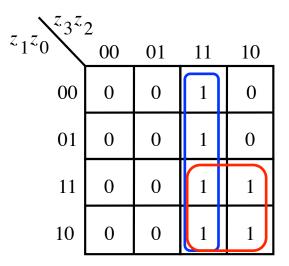
x1	x2	x3	x4		
0	0	0	0	m0	
0	0	0	1	m1	
0	0	1	0	m2	
0	0	1	1	m3	
0	1	0	0	m4	
0	1	0	1	m5	
0	1	1	0	m6	
0	1	1	1	m7	
1	0	0	0	m8	
1	0	0	1	m9	
1	0	1	0	m10	
1	0	1	1	m11	
1	1	0	0	m12	
1	1	0	1	m13	
1	1	1	0	m14	
1	1	1	1	m15	

Ň	$x_1 x_2$	7				
<i>x</i> ₃ <i>x</i>	$4^{x_1x_2}$	00	01	11	10	
	00	m_0	m_4	<i>m</i> ₁₂	<i>m</i> ₈	
	01	m_1	<i>m</i> ₅	<i>m</i> ₁₃	<i>m</i> 9	
r	11	<i>m</i> ₃	<i>m</i> ₇	<i>m</i> ₁₅	<i>m</i> ₁₁	
<i>x</i> ₃ <	10	m_2	<i>m</i> ₆	<i>m</i> ₁₄	<i>m</i> ₁₀	
	. [x	2	,	

z3	z2	z1	z0		
0	0	0	0	m0	
0	0	0	1	m1	
0	0	1	0	m2	
0	0	1	1	m3	
0	1	0	0	m4	
0	1	0	1	m5	
0	1	1	0	m6	
0	1	1	1	m7	
1	0	0	0	m8	
1	0	0	1	m9	
1	0	1	0	m10	
1	0	1	1	m11	
1	1	0	0	m12	
1	1	0	1	m13	
1	1	1	0	m14	
1	1	1	1	m15	



z3	z2	z1	z0		
0	0	0	0	m0	
0	0	0	1	m1	
0	0	1	0	m2	
0	0	1	1	m3	
0	1	0	0	m4	
0	1	0	1	m5	
0	1	1	0	m6	
0	1	1	1	m7	
1	0	0	0	m8	
1	0	0	1	m9	
1	0	1	0	m10	
1	0	1	1	m11	
1	1	0	0	m12	
1	1	0	1	m13	
1	1	1	0	m14	
1	1	1	1	m15	



 $\mathbf{f} = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$

z3	z2	z1	z0	
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

$z_1 z_0 \sum_{i=1}^{z_1 z_0} z_1 z_0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$							
	00	01	11	10			
00	0	0	1	0			
01	0	0	1	0			
11	0	0	1	1			
10	0	0	1	1			

 $f = z_3 z_2 + z_3 z_1$

In addition, also check if there was a carry

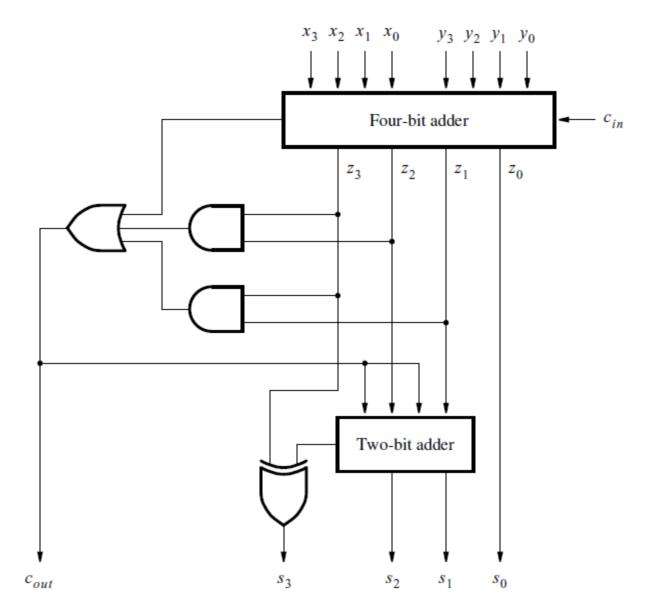
$$f = carry-out + z_3 z_2 + z_3 z_1$$

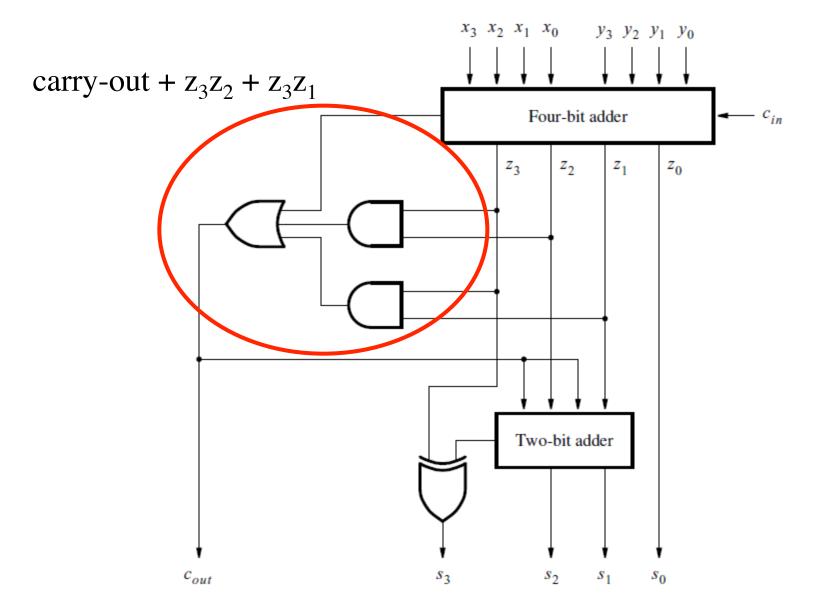
Verilog code for a one-digit BCD adder

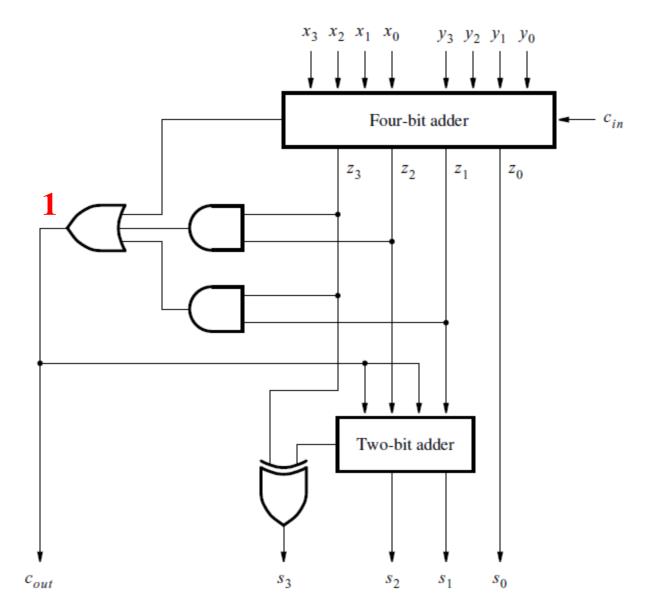
module bcdadd(Cin, X, Y, S, Cout);
input Cin;
input [3:0] X,Y;
output reg [3:0] S;
output reg Cout;
reg [4:0] Z;

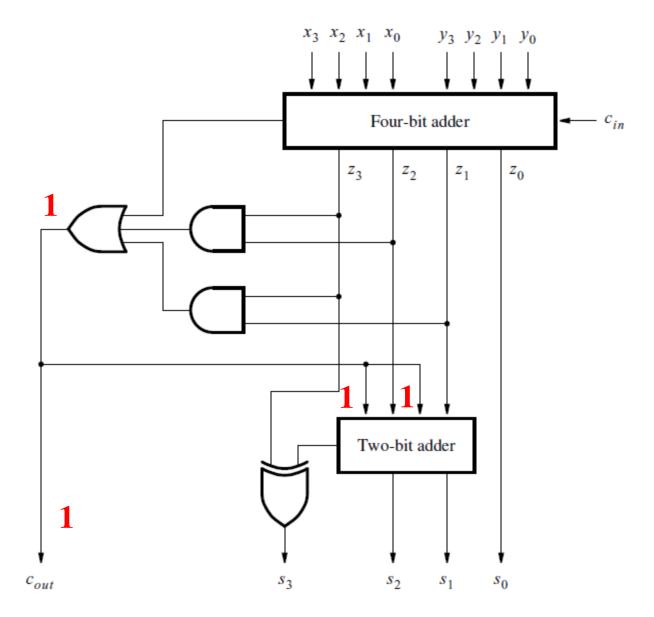
```
always@ (X, Y, Cin)
begin
Z = X + Y + Cin;
if (Z < 10)
{Cout, S} = Z;
else
{Cout, S} = Z + 6;
end
```

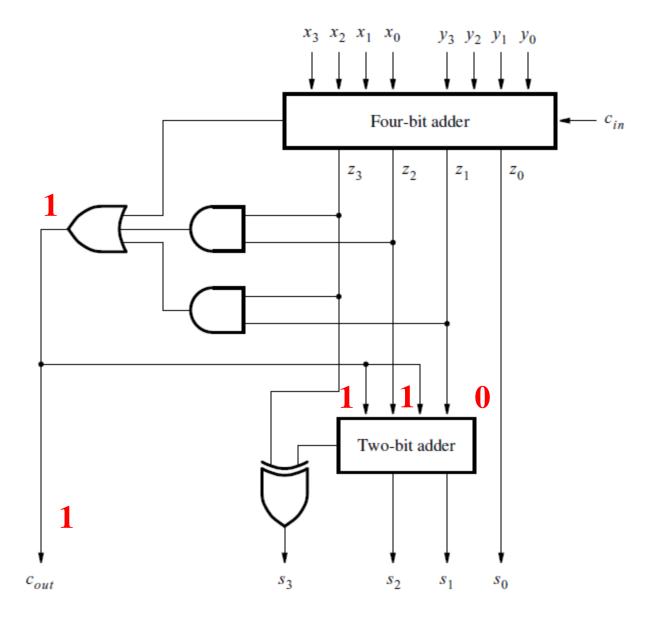
endmodule

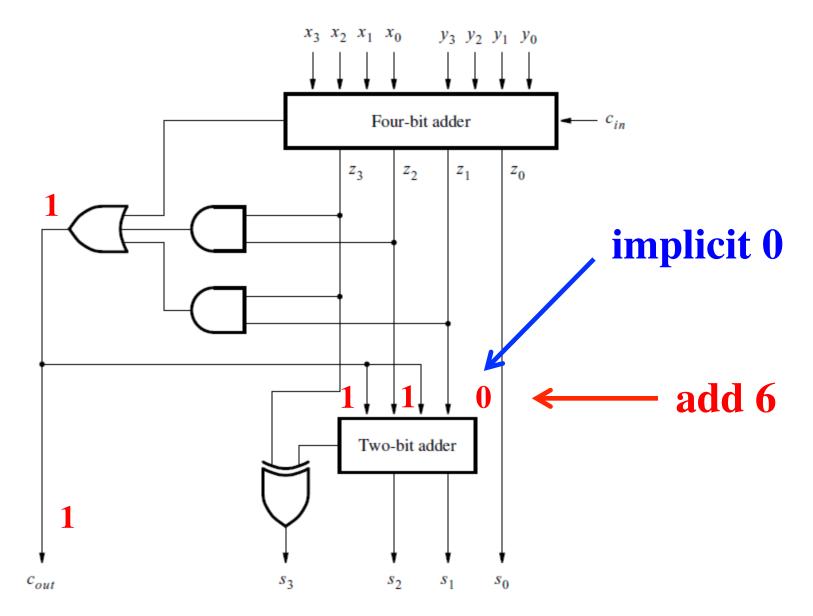












Questions?

THE END