
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Multiplication

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff
•  HW 6 is out

•  It is due on Monday Oct 12 @ 4pm

Quick Review

The Full-Adder Circuit

[Figure 3.3c from the textbook]	

The Full-Adder Circuit

[Figure 3.3c from the textbook]	

Let's take a closer look at this.	

yi	

xi	

ci	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci	

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

Decomposing the Carry Expression

yi	

xi	

ci+1	

ci	

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

yi	

xi	

ci	

ci+1	

si	

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

yi	

xi	

ci	

ci+1	

si	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci	

yi	

xi	

ci	

ci+1	

si	

gi	
 pi	

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci	

yi	

xi	

ci	

ci+1	

si	

gi	
 pi	

gi	

pi	

Yet Another Way to Draw It (Just Rotate It)

ci	

ci+1	
 si	

xi	
 yi	

pi	
gi	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

The delay is 5 gates (1+2+2)

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

n-bit ripple-carry adder: 2n+1 gate delays

. . . 	

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

gi	
 pi	

ci+1 = gi + pi ci	

ci+1 = gi + pi (gi-1 + pi-1 ci-1)	

 = gi + pi gi-1 + pi pi-1 ci-1	

Carry for the first two stages

c1 = g0 + p0 c0	

c2 = g1 + p1g0 + p1p0c0	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

It takes 3 gate delays to generate c1

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

It takes 3 gate delays to generate c2

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

The first two stages of a carry-lookahead adder

2 	
c 	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

It takes 4 gate delays to generate s1

2 	
c 	

It takes 4 gate delays to generate s2

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

s 	
2 	

N-bit Carry-Lookahead Adder

•  It takes 3 gate delays to generate all carry signals

•  It takes 1 more gate delay to generate all sum bits

•  Thus, the total delay through an n-bit
carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

c1 = g0 + p0 c0	

c2 = g1 + p1g0 + p1p0c0	

ci+1 = gi + pi ci	

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0	

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

. . .	

Expanding the Carry Expression

c1 = g0 + p0 c0	

c2 = g1 + p1g0 + p1p0c0	

ci+1 = gi + pi ci	

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0	

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

. . .	

Even this takes 	

only 3 gate delays 	

Block	

x	
31	
 24	
–	

c	
32	
 c	
24	

y	
31	
 24	
–	

s	
31	
 24	
–	

x	
15	
 8	
–	

c	
16	

y	
15	
 8	
–	

s	
15	
 8	
–	

c	
8	

x	
7	
 0	
–	
 y	
7	
 0	
–	

s	
7	
 0	
–	

c	
0	
3	
 Block	

1	
 Block	

0	

A hierarchical carry-lookahead adder with
ripple-carry between blocks

[Figure 3.16 from the textbook]	

Block 	

x 	
15	
 8 	
– 	
 y 	
15	
 8 	
– 	
 x 	
7 	
 0 	
– 	
 y 	
7 	
 0 	
– 	

3 	
 Block 	

1 	
 Block 	

0 	

Second-level lookahead	

c 	
0 	

s 	
7 	
 0 	
– 	

P 	
0 	
G 	
0 	
P 	
1 	
G 	
1 	
P 	
3 	
G 	
3 	

s 	
15	
 8 	
– 	
s 	
31	
 24	
– 	

c 	
8 	
c 	
16	
c 	
32	

x 	
31	
 24	
–	
 y 	
31	
 24	
– 	

c 	
24	

[Figure 3.17 from the textbook]	

A hierarchical carry-lookahead adder

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

G0	

P0	

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

G0	

P0	

c8 = G0 + P0 c0	

The Hierarchical Carry Expression

c8 = G0 + P0 c0	

c16 = G1 + P1 c8	

 = G1 + P1 G0 + P1 P0 c0	

c24 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0	

c32 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0	

Block 	

x 	
15	
 8 	
– 	
 y 	
15	
 8 	
– 	
 x 	
7 	
 0 	
– 	
 y 	
7 	
 0 	
– 	

3 	
 Block 	

1 	
 Block 	

0 	

Second-level lookahead	

c 	
0 	

s 	
7 	
 0 	
– 	

P 	
0 	
G 	
0 	
P 	
1 	
G 	
1 	
P 	
3 	
G 	
3 	

s 	
15	
 8 	
– 	
s 	
31	
 24	
– 	

c 	
8 	
c 	
16	
c 	
32	

x 	
31	
 24	
–	
 y 	
31	
 24	
– 	

c 	
24	

[Figure 3.17 from the textbook]	

A hierarchical carry-lookahead adder

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical
CLA Adder
Carry Logic

C8 – 5 gate delays ���
C16 – 5 gate delays ���
C24 – 5 Gate delays ���
C32 – 5 Gate delays 	

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical

CLA
Critical Path

 C9 – 7 gate delays ���

C17 – 7 gate delays ���
C25 – 7 Gate delays	

Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

•  Is 8 gates
§  3 to generate all Gj and Pj
§  +2 to generate c8, c16, c24, and c32
§  +2 to generate internal carries in the blocks
§  +1 to generate the sum bits (one extra XOR)

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 4 x 10 = ?

 542 x 10 = ?

 1245 x 10 = ?

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 4 x 10 = 40

 542 x 10 = 5420

 1245 x 10 = 12450

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 4 x 10 = 40

 542 x 10 = 5420

 1245 x 10 = 12450

 You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by 10?

 14 / 10 = ?

 540 / 10 = ?

 1240 x 10 = ?

Decimal Division by 10

What happens when we divide a number by 10?

 14 / 10 = 1 //integer division

 540 / 10 = 54

 1240 x 10 = 124

You simply delete the rightmost number	

Binary Multiplication by 2

What happens when we multiply a number by 2?

 011 times 2 = ?

 101 times 2 = ?

 110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2?

 011 times 2 = 0110

 101 times 2 = 1010

 110011 times 2 = 1100110

 You simply add a zero as the rightmost number

Binary Multiplication by 4

What happens when we multiply a number by 4?

 011 times 4 = ?

 101 times 4 = ?

 110011 times 4 = ?

Binary Multiplication by 4

What happens when we multiply a number by 4?

 011 times 4 = 01100

 101 times 4 = 10100

 110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left	

Binary Multiplication by 2N

What happens when we multiply a number by 2N?

 011 times 2N = 01100…0 // add N zeros

 101 times 4 = 10100…0 // add N zeros

 110011 times 4 = 11001100…0 // add N zeros

Binary Division by 2

What happens when we divide a number by 2?

 0110 divided by 2 = ?

 1010 divides by 2 = ?

 110011 divides by 2 = ?

Binary Division by 2

What happens when we divide a number by 2?

 0110 divided by 2 = 011

 1010 divides by 2 = 101

 110011 divides by 2 = 11001

You simply delete the rightmost number	

Decimal Multiplication By Hand

[http://www.ducksters.com/kidsmath/long_multiplication.php]	

Binary Multiplication By Hand

[Figure 3.34a from the textbook]	

Binary Multiplication By Hand

[Figure 3.34b from the textbook]	

Binary Multiplication By Hand

[Figure 3.34c from the textbook]	

Figure 3.35. A 4x4 multiplier circuit.

Figure 3.35. A 4x4 multiplier circuit.

Positive Multiplicand Example

[Figure 3.36a in the textbook]	

Positive Multiplicand Example

[Figure 3.36a in the textbook]	

add an extra bit 	

to avoid overflow	

Negative Multiplicand Example

[Figure 3.36b in the textbook]	

Negative Multiplicand Example

[Figure 3.36b in the textbook]	

add an extra bit 	

to avoid overflow	

but now it is 1	

What if the Multiplier is Negative?
•  Convert both to their 2's complement version

•  This will make the multiplier positive

•  Then Proceed as normal

•  This will not affect the result

•  Example: 5*(-4) = (-5)*(4)= -20

Binary Coded Decimal

Table of Binary-Coded Decimal Digits

Addition of BCD digits

[Figure 3.38a in the textbook]	

Addition of BCD digits

[Figure 3.38a in the textbook]	

The result is greater than 9, which is not a valid BCD number	

Addition of BCD digits

[Figure 3.38a in the textbook]	

add 6	

Addition of BCD digits

[Figure 3.38b in the textbook]	

Addition of BCD digits

[Figure 3.38b in the textbook]	

The result is 1, but it should be 7	

Addition of BCD digits

[Figure 3.38b in the textbook]	

add 6	

Why add 6?

•  Think of BCD addition as a mod 16 operation

•  Decimal addition is mod 10 operation

BCD Arithmetic Rules

Z = X + Y

If Z <= 9, then S=Z and carry-out = 0

If Z < 9, then S=Z+6 and carry-out =1

Block diagram for a one-digit BCD adder

[Figure 3.39 in the textbook]	

How to check if the number is > 9?

7 - 0111
8 - 1000
9 - 1001
10 - 1010
11 - 1011
12 - 1100
13 - 1101
14 - 1110
15 - 1111

x 1 x 2 x 3 x 4 00 01 11 10

00

01

11

10

x 2

x 4

x 1

x 3

m 0

m 1 m 5

m 4 m 12

m 13

m 8

m 9

m 3

m 2 m 6

m 7 m 15

m 14

m 11

m 10

x1 x2 x3 x4
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

A four-variable Karnaugh map

z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 	
3 	
z 	
2 	
z 	
1 	
z 	
0 	

0 	

00	
 01	
 11	
 10	

0 	
 1 	
 0	

0 	
 0 	
 1 	
 0 	

0 	
 0 	
 1 	
 1 	

0 	
 0 	
 1 	
 1 	

00	

01	

11	

10	

z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 	
3 	
z 	
2 	
z 	
1 	
z 	
0 	

0 	

00	
 01	
 11	
 10	

0 	
 1 	
 0	

0 	
 0 	
 1 	
 0 	

0 	
 0 	
 1 	
 1 	

0 	
 0 	
 1 	
 1 	

00	

01	

11	

10	

f = z3z2 + z3z1	

z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 	
3 	
z 	
2 	
z 	
1 	
z 	
0 	

0 	

00	
 01	
 11	
 10	

0 	
 1 	
 0	

0 	
 0 	
 1 	
 0 	

0 	
 0 	
 1 	
 1 	

0 	
 0 	
 1 	
 1 	

00	

01	

11	

10	

f = z3z2 + z3z1	

In addition, also check if there was a carry	

f = carry-out + z3z2 + z3z1	

module	
bcdadd(Cin, 	
X,	
Y,	
S, Cout);	

input 	
Cin;	

input 	
[3:0] X, 	
Y;	

output	
reg [3:0] S; 	

output	
reg Cout; 	

reg 	
[4:0] Z; 	

always	
@ (X, 	
Y, 	
Cin)	

begin	

Z 	
= 	
X 	
+ 	
Y 	
+ 	
Cin;	

if	
(Z	
< 	
10) 	

{Cout,	
S}	
= 	
Z;	

else	

{Cout,	
S}	
= 	
Z 	
+ 	
6;	

end 	

endmodule	

Verilog code for a one-digit BCD adder

[Figure 3.40 in the textbook]	

[Figure 3.41 in the textbook]	

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]	

Circuit for a one-digit BCD adder

carry-out + z3z2 + z3z1	

[Figure 3.41 in the textbook]	

Circuit for a one-digit BCD adder

1	

[Figure 3.41 in the textbook]	

Circuit for a one-digit BCD adder

1	

1	

1	
 1	

[Figure 3.41 in the textbook]	

Circuit for a one-digit BCD adder

1	

1	

1	
 1	
 0	

[Figure 3.41 in the textbook]	

Circuit for a one-digit BCD adder

1	

1	

1	
 1	
 0	
 add 6	

implicit 0	

Questions?

THE END

