
Instructor: Alexander Stoytchev 
 

http://www.ece.iastate.edu/~alexs/classes/ 

CprE 281:  
Digital Logic 



Floating Point Numbers 

CprE 281: Digital Logic 
Iowa State University, Ames, IA 
Copyright © Alexander Stoytchev 



Administrative Stuff 
•  HW 6 is out 

•  It is due on Monday Oct 12 @ 4pm 



The story with floats is more complicated 
IEEE 754-1985 Standard 

[http://en.wikipedia.org/wiki/IEEE_754]	




 In the example shown above, the sign is zero so s 
is +1, the exponent is 124 so e is −3, and the 
significand m is 1.01 (in binary, which is 1.25 in 
decimal). The represented number is therefore 
+1.25 × 2−3, which is +0.15625.  

[http://en.wikipedia.org/wiki/IEEE_754]	




Figure 3.37.   IEEE Standard floating-point formats.	
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On-line IEEE 754 Converter  

•  http://www.h-schmidt.net/FloatApplet/IEEE754.html 

 



Conversion of fixed point 
numbers from decimal to binary 

[Figure 3.44 from the textbook]	




Memory Analogy 
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Memory Analogy (32 bit architecture) 
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Memory Analogy (32 bit architecture) 
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Storing a Double 
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Storing 3.14 
•  3.14 in binary IEEE-754 double precision (64 bits) 
   sign         exponent                                       mantissa 

   0     10000000000  1001000111101011100001010001111010111000010100011111 

•  In hexadecimal this is (hint: groups of four): 

      0100 0000 0000 1001 0001 1110 1011 1000 0101 0001 1110 1011 1000 0101 0001 1111 

      4    0    0    9    1    E    B   8    5    1    E    B   8    5    1    F 



Storing 3.14 
•  So 3.14 in hexadecimal IEEE-754 is  40091EB851EB851F 

•  This is 64 bits.  

•  On a 32 bit architecture there are 2 ways to store this 

Small address:          40091EB8                       51EB851F 
Large address:          51EB851F                       40091EB8 

Big-Endian Little-Endian 

Motorola 6800 Intel x86 Example CPUs: 



Storing 3.14 

Address   0x08	


Address   0x0C	
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Storing 3.14 on a Little-Endian Machine 
(these are the actual bits that are stored)  

Address   0x08	


Address   0x0C	


01010001      11101011        10000101        00011111	

	


01000000      00001001        00011110        10111000	


Once again, 3.14 in IEEE-754 double precision is: 
   sign         exponent                                       mantissa 

   0     10000000000  1001000111101011100001010001111010111000010100011111 



They are stored in binary 
the hexadecimals are just for visualization 

Address   0x08	


Address   0x0C	

4  0        0  9       1  E        B  8	


5  1       E  B       8  5        1  F	

01010001      11101011        10000101        00011111	

	


01000000      00001001        00011110        10111000	




Big-Endian 

(8-bit architecture)	


(16-bit architecture)	


http://en.wikipedia.org/wiki/Endianness	




Little Endian 

http://en.wikipedia.org/wiki/Endianness	


(8-bit architecture)	


(16-bit architecture)	




Big-Endian/Little-Endian analogy 

[image fom http://www.simplylockers.co.uk/images/PLowLocker.gif]	




Big-Endian/Little-Endian analogy 

[image fom http://www.simplylockers.co.uk/images/PLowLocker.gif]	




Big-Endian/Little-Endian analogy 

[image fom http://www.simplylockers.co.uk/images/PLowLocker.gif]	




What would be printed? 
(don’t try this at home) 

double pi = 3.14; 
printf(“%d”,pi); 
 
•  Result: 1374389535 
 
Why? 

§  3.14  = 40091EB851EB851F (in double format) 
§  Stored on a little-endian 32-bit architecture  

•  51EB851F (1374389535 in decimal) 
•  40091EB8 (1074339512 in decimal) 



What would be printed? 
(don’t try this at home) 

double pi = 3.14; 
printf(“%d %d”, pi); 
 
•  Result: 1374389535  1074339512  
 
Why? 

§  3.14  = 40091EB851EB851F (in double format) 
§  Stored on a little-endian 32-bit architecture  

•  51EB851F (1374389535 in decimal) 
•  40091EB8 (1074339512 in decimal) 

•  The second %d uses the extra bytes of pi that 
were not printed by the first %d  



What would be printed? 
(don’t try this at home) 

double a = 2.0; 
printf(“%d”,a); 
 
•  Result: 0 
 
Why? 

§  2.0  = 40000000 00000000  (in hex IEEE double format) 
§  Stored on a little-endian 32-bit architecture  

•  00000000   (0                   in decimal) 
•  40000000   (1073741824 in decimal) 



What would be printed? 
(an even more advanced example) 

int a[2];               // defines an int array 
a[0]=0; 
a[1]=0; 
scanf(“%lf”, &a[0]);    // read 64 bits into 32 bits 
// The user enters 3.14 
printf(“%d %d”, a[0], a[1]); 
 
•  Result: 1374389535  1074339512  
 
Why? 

§  3.14  = 40091EB851EB851F (in double format) 
§  Stored on a little-endian 32-bit architecture  

•  51EB851F (1374389535 in decimal) 
•  40091EB8 (1074339512 in decimal) 

§  The double 3.14 requires 64 bits which are stored in the two 
consecutive 32-bit integers named a[0] and a[1] 



Questions? 



THE END 


