
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Floating Point Numbers

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff
•  HW 6 is out

•  It is due on Monday Oct 12 @ 4pm

The story with floats is more complicated
IEEE 754-1985 Standard

[http://en.wikipedia.org/wiki/IEEE_754]	

 In the example shown above, the sign is zero so s
is +1, the exponent is 124 so e is −3, and the
significand m is 1.01 (in binary, which is 1.25 in
decimal). The represented number is therefore
+1.25 × 2−3, which is +0.15625.

[http://en.wikipedia.org/wiki/IEEE_754]	

Figure 3.37. IEEE Standard floating-point formats.	

Sign	

32 bits 	

23 bits of mantissa 	

excess-127	

exponent	

8-bit 	

52 bits of mantissa 	
11-bit excess-1023	

exponent	

64 bits 	

Sign	

S 	
 M 	

S 	
 M 	

(a) Single precision	

(b) Double precision	

E 	

+ 	

E 	

0 denotes 	

– 	
1 denotes 	

On-line IEEE 754 Converter

•  http://www.h-schmidt.net/FloatApplet/IEEE754.html

Conversion of fixed point
numbers from decimal to binary

[Figure 3.44 from the textbook]	

Memory Analogy

Address 0	

Address 1	

Address 2	

Address 3	

Address 4	

Address 5	

Address 6	

Memory Analogy (32 bit architecture)

Address 0	

Address 4	

Address 8	

Address 12	

Address 16	

Address 20	

Address 24	

Memory Analogy (32 bit architecture)

Address 0x00	

Address 0x04	

Address 0x08	

Address 0x0C	

Address 0x10	

Address 0x14	

Address 0x18	

Hexadecimal	

Address 0x0A	

Address 0x0D	

Storing a Double

Address 0x08	

Address 0x0C	

Storing 3.14
•  3.14 in binary IEEE-754 double precision (64 bits)
 sign exponent mantissa

 0 10000000000 1001000111101011100001010001111010111000010100011111

•  In hexadecimal this is (hint: groups of four):

 0100 0000 0000 1001 0001 1110 1011 1000 0101 0001 1110 1011 1000 0101 0001 1111

 4 0 0 9 1 E B 8 5 1 E B 8 5 1 F

Storing 3.14
•  So 3.14 in hexadecimal IEEE-754 is 40091EB851EB851F

•  This is 64 bits.

•  On a 32 bit architecture there are 2 ways to store this

Small address: 40091EB8 51EB851F
Large address: 51EB851F 40091EB8

Big-Endian Little-Endian

Motorola 6800 Intel x86 Example CPUs:

Storing 3.14

Address 0x08	

Address 0x0C	

40 09 1E B8	

51 EB 85 1F	

Address 0x08	

Address 0x0C	
 40 09 1E B8	

51 EB 85 1F	

B
ig

-E
nd

ia
n

Li
ttl

e-
E

nd
ia

n

Storing 3.14 on a Little-Endian Machine
(these are the actual bits that are stored)

Address 0x08	

Address 0x0C	

01010001 11101011 10000101 00011111	

	

01000000 00001001 00011110 10111000	

Once again, 3.14 in IEEE-754 double precision is:
 sign exponent mantissa

 0 10000000000 1001000111101011100001010001111010111000010100011111

They are stored in binary
the hexadecimals are just for visualization

Address 0x08	

Address 0x0C	

4 0 0 9 1 E B 8	

5 1 E B 8 5 1 F	

01010001 11101011 10000101 00011111	

	

01000000 00001001 00011110 10111000	

Big-Endian

(8-bit architecture)	

(16-bit architecture)	

http://en.wikipedia.org/wiki/Endianness	

Little Endian

http://en.wikipedia.org/wiki/Endianness	

(8-bit architecture)	

(16-bit architecture)	

Big-Endian/Little-Endian analogy

[image fom http://www.simplylockers.co.uk/images/PLowLocker.gif]	

Big-Endian/Little-Endian analogy

[image fom http://www.simplylockers.co.uk/images/PLowLocker.gif]	

Big-Endian/Little-Endian analogy

[image fom http://www.simplylockers.co.uk/images/PLowLocker.gif]	

What would be printed?
(don’t try this at home)

double pi = 3.14;
printf(“%d”,pi);

•  Result: 1374389535

Why?

§  3.14 = 40091EB851EB851F (in double format)
§  Stored on a little-endian 32-bit architecture

•  51EB851F (1374389535 in decimal)
•  40091EB8 (1074339512 in decimal)

What would be printed?
(don’t try this at home)

double pi = 3.14;
printf(“%d %d”, pi);

•  Result: 1374389535 1074339512

Why?

§  3.14 = 40091EB851EB851F (in double format)
§  Stored on a little-endian 32-bit architecture

•  51EB851F (1374389535 in decimal)
•  40091EB8 (1074339512 in decimal)

•  The second %d uses the extra bytes of pi that
were not printed by the first %d

What would be printed?
(don’t try this at home)

double a = 2.0;
printf(“%d”,a);

•  Result: 0

Why?

§  2.0 = 40000000 00000000 (in hex IEEE double format)
§  Stored on a little-endian 32-bit architecture

•  00000000 (0 in decimal)
•  40000000 (1073741824 in decimal)

What would be printed?
(an even more advanced example)

int a[2]; // defines an int array
a[0]=0;
a[1]=0;
scanf(“%lf”, &a[0]); // read 64 bits into 32 bits
// The user enters 3.14
printf(“%d %d”, a[0], a[1]);

•  Result: 1374389535 1074339512

Why?

§  3.14 = 40091EB851EB851F (in double format)
§  Stored on a little-endian 32-bit architecture

•  51EB851F (1374389535 in decimal)
•  40091EB8 (1074339512 in decimal)

§  The double 3.14 requires 64 bits which are stored in the two
consecutive 32-bit integers named a[0] and a[1]

Questions?

THE END

