

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplexers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

HW 6 is due on Monday

Administrative Stuff

• HW 7 is out

It is due on Monday Oct 19 @ 4pm

2-1 Multiplexer (Definition)

- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x₂

Graphical Symbol for a 2-1 Multiplexer



Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

$$s x_1 x_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
0 0 1	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$$

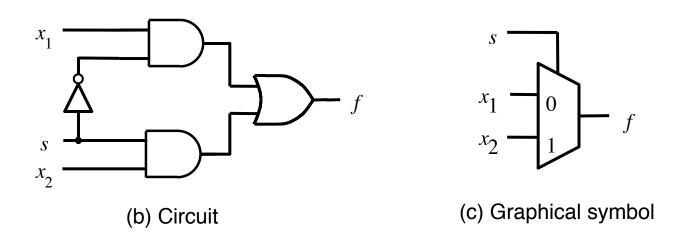
Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

Circuit for 2-1 Multiplexer



$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
0 0 0	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

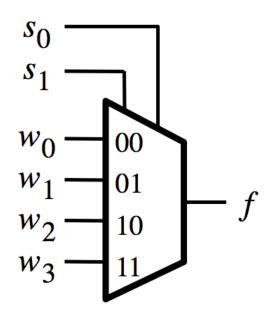
(a)Truth table

S	$f(s, x_1, x_2)$
0	x_1
1	x_2

4-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If s₁=0 and s₀=0, then the output f is equal to w₀
- If s₁=0 and s₀=1, then the output f is equal to w₁
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

Graphical Symbol and Truth Table



(a) Graphic symbol

<i>s</i> ₁	s_0	f
0	0	w_0
0	1	w_1
1	0	w_2
1	1	w_3

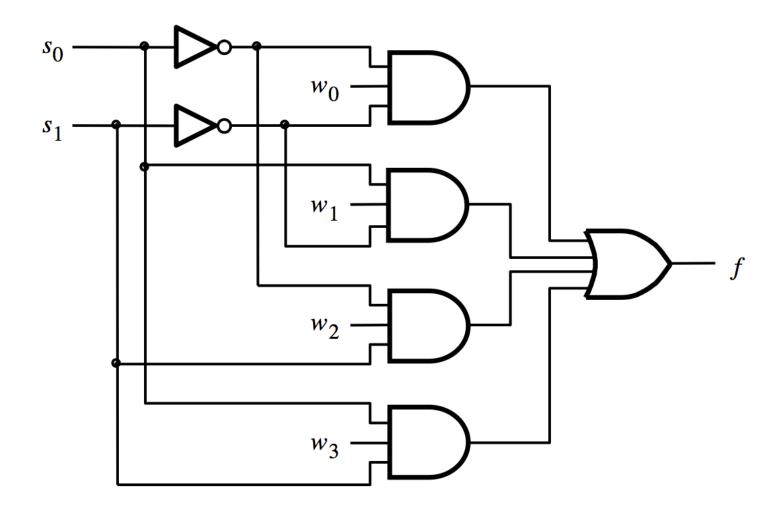
(b) Truth table

The long-form truth table

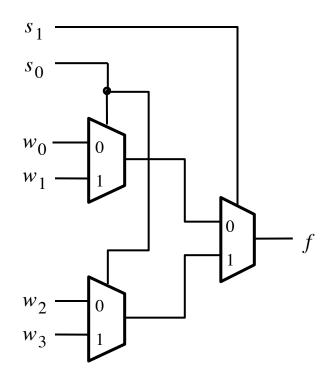
The long-form truth table

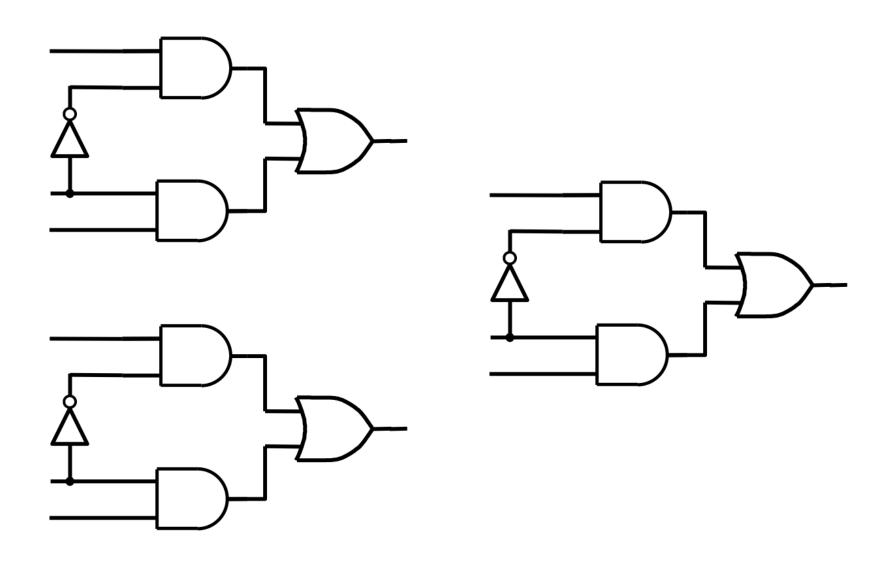
S_1S_0	I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₆	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0	0 0 1	0 0 0 0	0 1 0	0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1	0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0	0	0 0 1 0	1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1	1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0	0	0 1 0 0	0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1	1	0 1 0 1	0	0 1 0 1 1	0 1 0 1 0
	0 1 1 0	0	0 1 1 0	1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1	1	0 1 1 1	1	0 1 1 1 1	0 1 1 1 0
	1 0 0 0	0	1 0 0 0	0	1 0 0 0 0	1 0 0 0 1
	1 0 0 1	1	1 0 0 1	0	1 0 0 1 0	1 0 0 1 1
	1 0 1 0	0	1 0 1 0	1	1 0 1 0 0	1 0 1 0 1
	1 0 1 1	1	1 0 1 1	1	1 0 1 1 0	1 0 1 1 1
	1 1 0 0	0	1 1 0 0	0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1	1	1 1 0 1	0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0	1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1	1	1 1 1 1	1	1 1 1 1 1	1 1 1 1 1

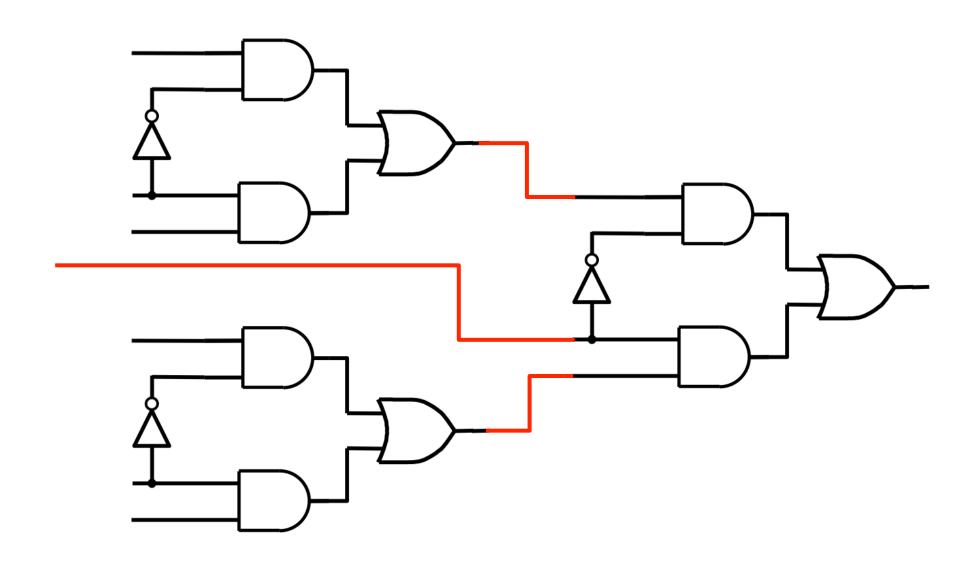
4-1 Multiplexer (SOP circuit)

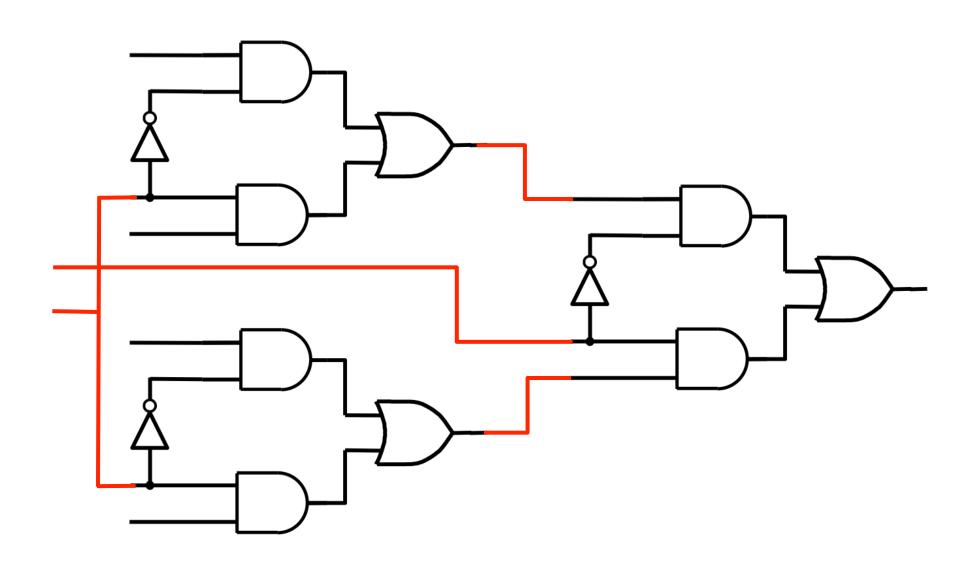


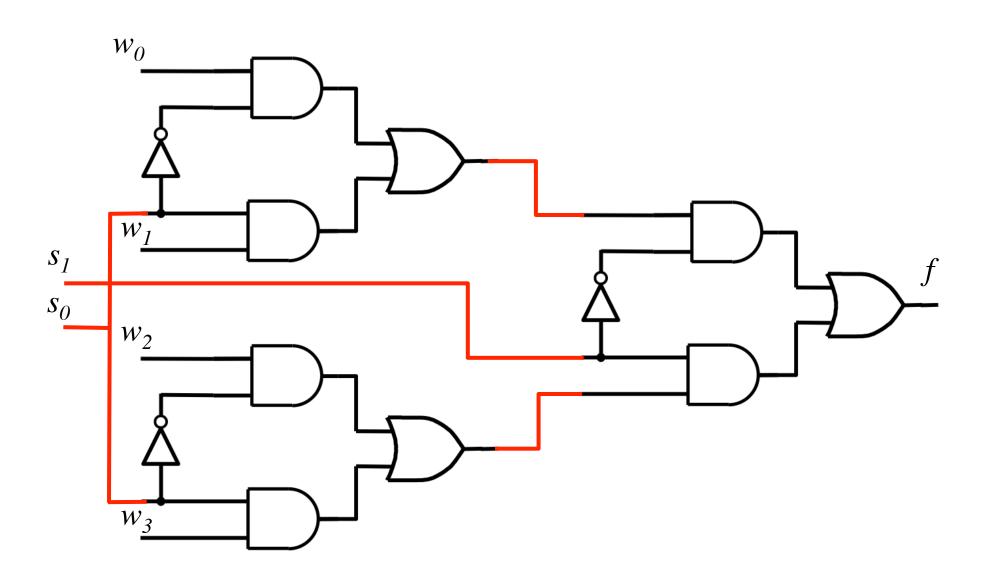
$$f = \overline{s_1} \, \overline{s_0} \, w_0 + \overline{s_1} \, s_0 \, w_1 + s_1 \, \overline{s_0} \, w_2 + s_1 \, s_0 \, w_3$$



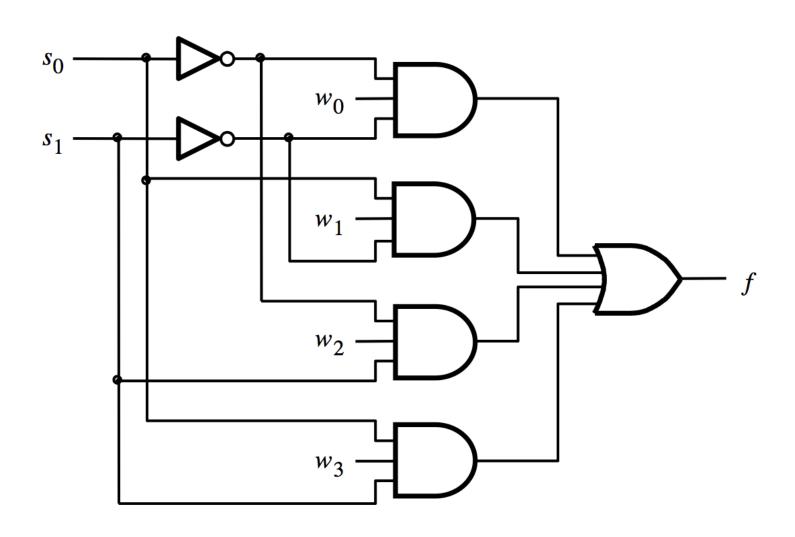




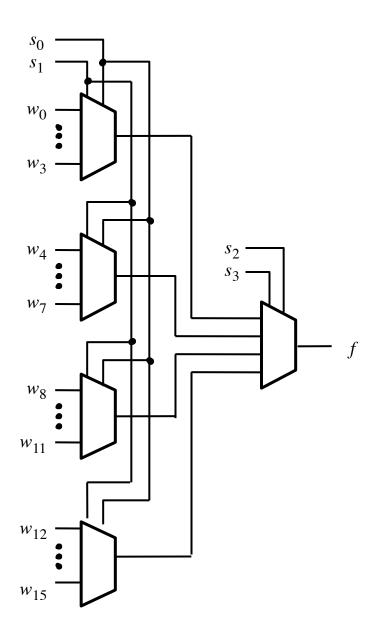




That is different from the SOP form of the 4-1 multiplexer shown below, which uses less gates



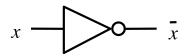
16-1 Multiplexer



[Figure 4.4 from the textbook]

Multiplexers Are Special

The Three Basic Logic Gates



$$x_1$$
 x_2
 $x_1 \cdot x_2$

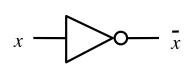
$$x_1$$
 x_2
 $x_1 + x_2$

NOT gate

AND gate

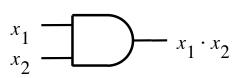
OR gate

Truth Table for NOT



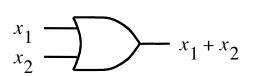
<i>X</i>	\overline{x}
0	1
1	0

Truth Table for AND



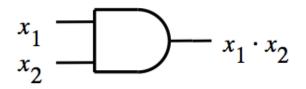
x_1	x_2	$x_1 \cdot x_2$
0 0 1 1	0 1 0	0 0 0 1

Truth Table for OR

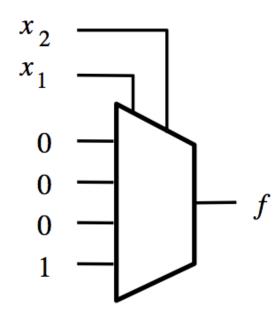


x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1
		1

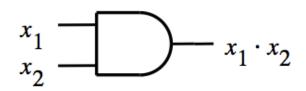
Building an AND Gate with 4-to-1 Mux



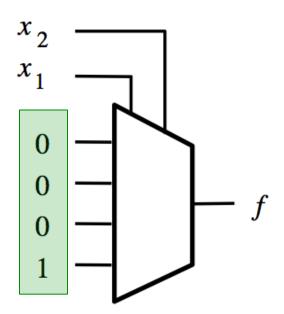
x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1



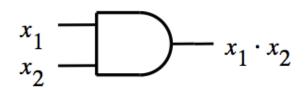
Building an AND Gate with 4-to-1 Mux



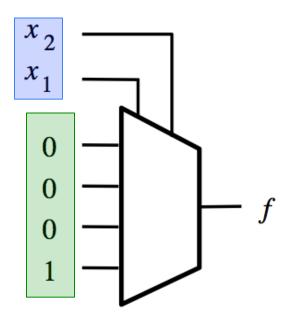
x_1	x_2	$x_1 \cdot x_2$	x
0 0 1 1	0 1 0	0 0 0	



These two are the same.

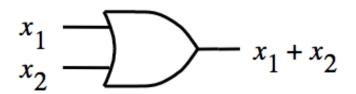


x_1	x_2	$x_1 \cdot x_2$
0	0	0
0 1	$\frac{1}{0}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
1	1	1

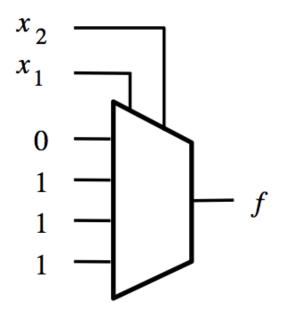


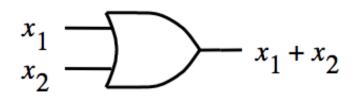
These two are the same.

And so are these two.

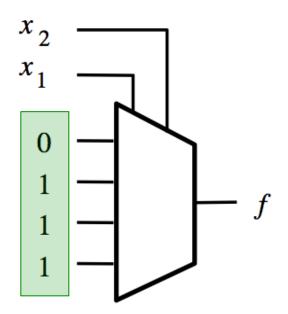


x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1

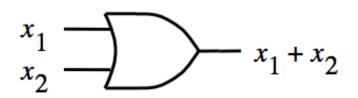




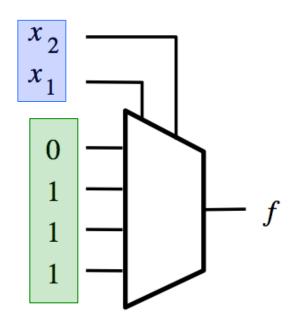
x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1



These two are the same.

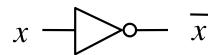


x_1	x_2	x_1	$+ x_2$	_
0	0		0	
0	1		1	
1	0		1	
1	1		1	

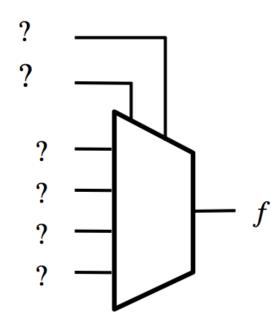


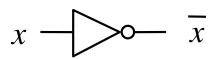
These two are the same.

And so are these two.

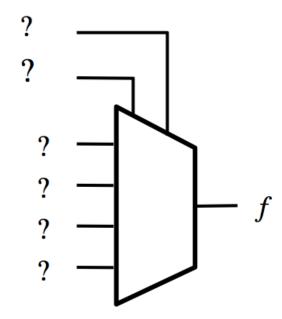


X	\overline{x}
0	1
1	0

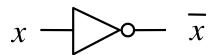




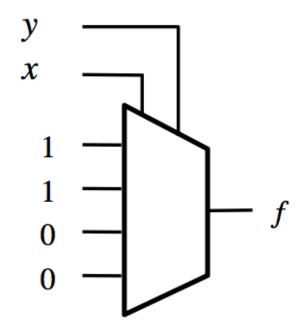
$\boldsymbol{\mathcal{X}}$	y	f
0	0	1
0	1	1
1	0	0
1	1	0

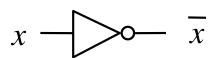


Introduce a dummy variable y.

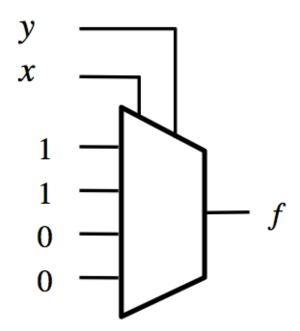


$\boldsymbol{\mathcal{X}}$	y	f
0	0	1
0	1	1
1	0	0
1	1	0

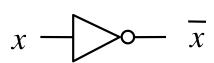


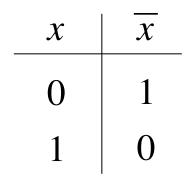


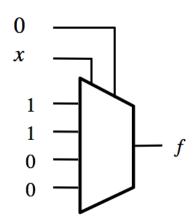
\mathcal{X}	y	f
0	0	1
0	1	1
1	0	0
1	1	0

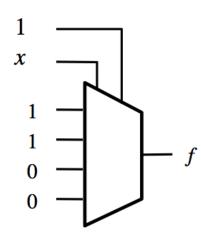


Now set y to either 0 or 1 (both will work). Why?





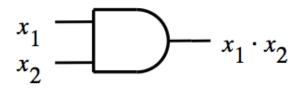




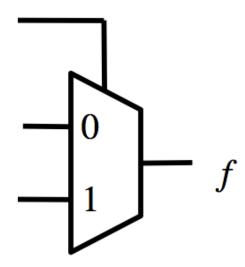
Two alternative solutions.

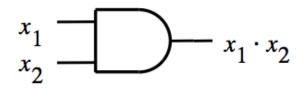
Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

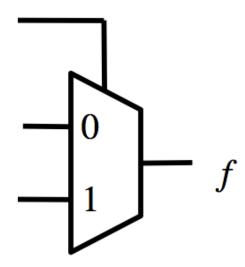


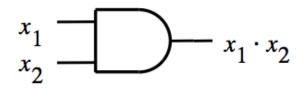
x_1	x_2	$x_1 \cdot x_2$
0 0	0 1 0	0 0 0
1	1	1



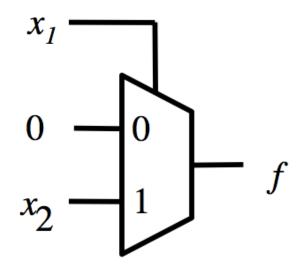


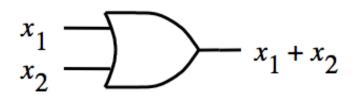
x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1



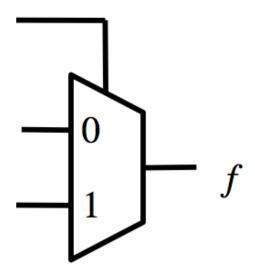


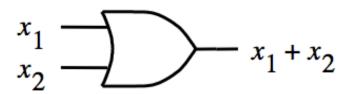
	x_1	x_2	$x_1 \cdot x_2$
	0	0 1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
-	1 1	0 1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ X_2



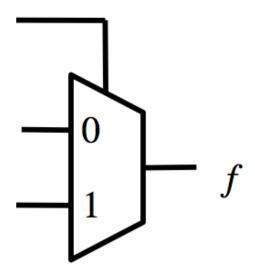


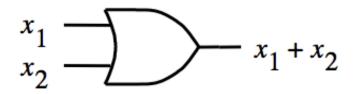
x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1
0 1 1	$\begin{matrix} 1 \\ 0 \\ 1 \end{matrix}$	$egin{array}{cccc} & 1 & & \ & 1 & & \ & & 1 & & \ & & & \end{array}$



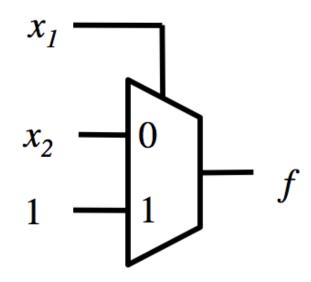


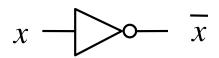
x_1	x_2	$x_1 + x_2$
0	0	0
$\frac{0}{1}$	$\frac{1}{0}$	1
1	1	1



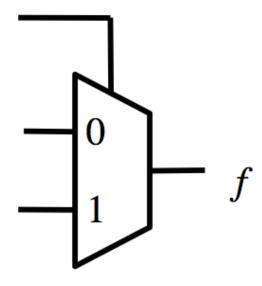


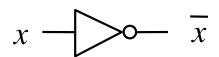
x_1	x_2	$x_1 + x_2$
0	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ X_2
1 1	0	1 1



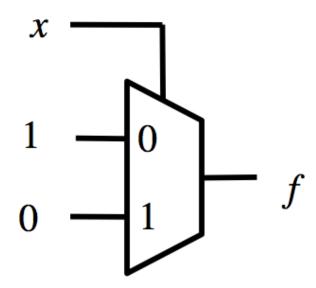


\mathcal{X}	\overline{x}
0	1
1	0





\mathcal{X}	\overline{x}
0	1
1	0

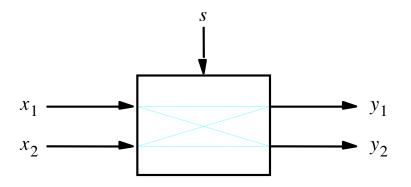


Implications

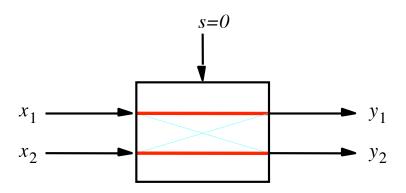
Any Boolean function can be implemented using only 2-to-1 multiplexers!

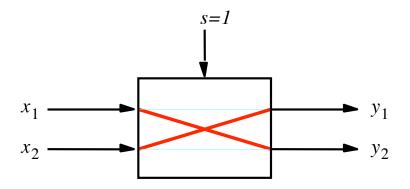
Synthesis of Logic Circuits Using Multiplexers

2 x 2 Crossbar switch

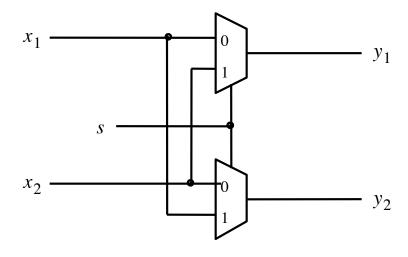


2 x 2 Crossbar switch

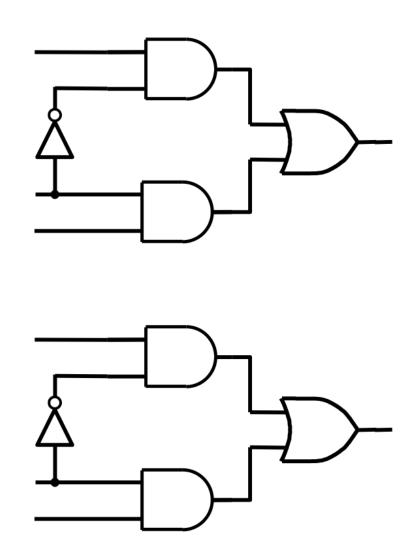




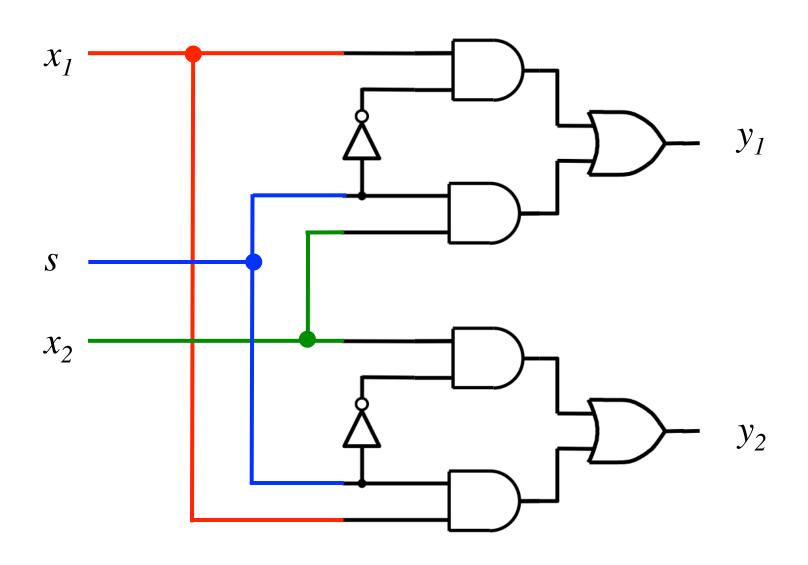
Implementation of a 2 x 2 crossbar switch with multiplexers



Implementation of a 2 x 2 crossbar switch with multiplexers

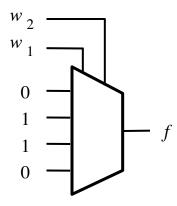


Implementation of a 2 x 2 crossbar switch with multiplexers

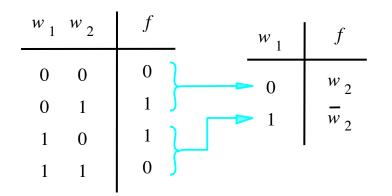


Implementation of a logic function with a 4x1 multiplexer

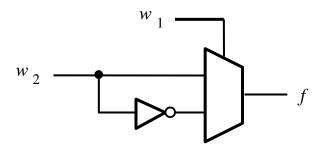
w_{1}	w_2	f
0	0	0
0	1	1
1	0	1
1	1	0



Implementation of the same logic function with a 2x1 multiplexer

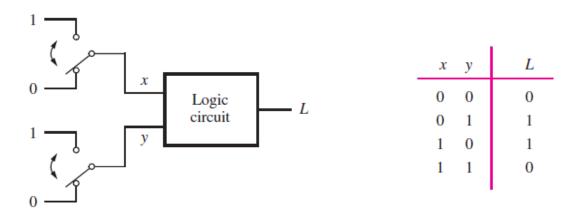


(b) Modified truth table



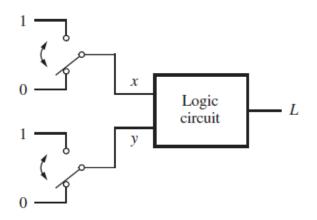
(c) Circuit

The XOR Logic Gate



(b) Truth table

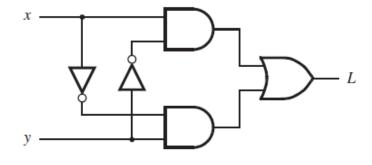
The XOR Logic Gate



x	у	L
0	0	0
0	1	1
1	0	1
1	1	0
		l

(a) Two switches that control a light

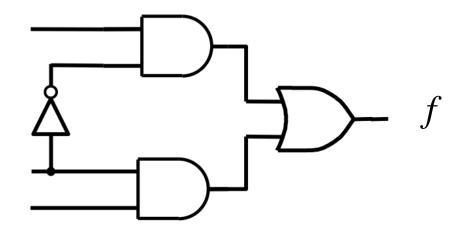
(b) Truth table



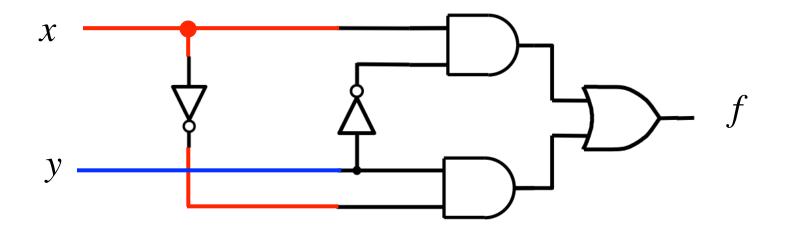
(c) Logic network

(d) XOR gate symbol

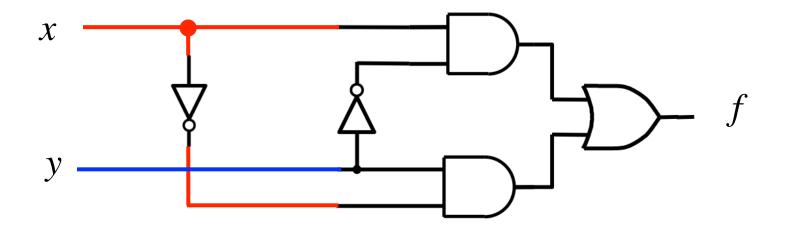
The XOR Logic Gate Implemented with a multiplexer



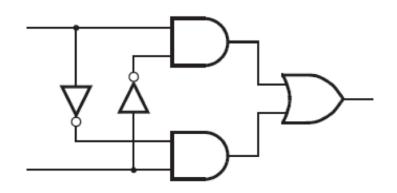
The XOR Logic Gate Implemented with a multiplexer



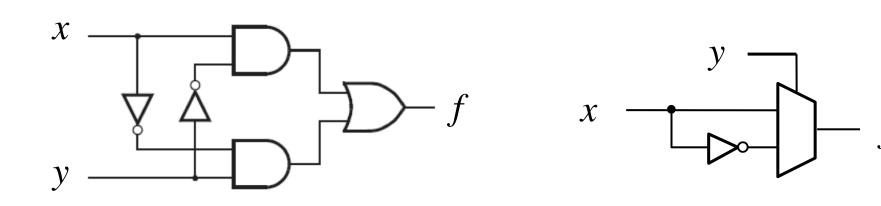
The XOR Logic Gate Implemented with a multiplexer



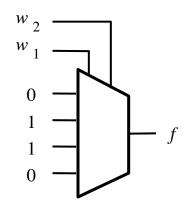
These two circuits are equivalent (the wires of the bottom AND gate are flipped)



In other words, all four of these are equivalent!



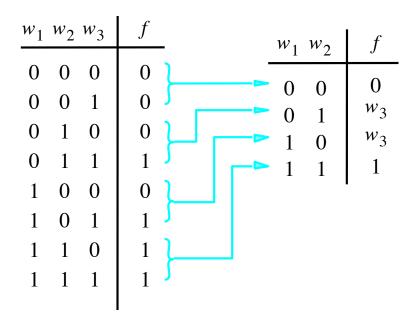




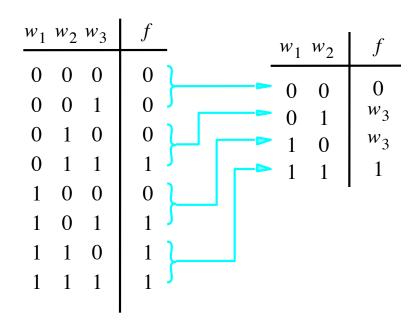
Implementation of another logic function

w_1	w_2	w_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

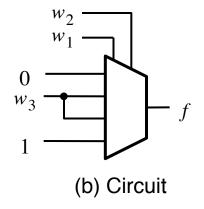
Implementation of another logic function



Implementation of another logic function



(a) Modified truth table



[Figure 4.7 from the textbook]

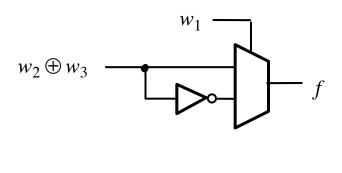
Another Example (3-input XOR)

w_1	w_2	w_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

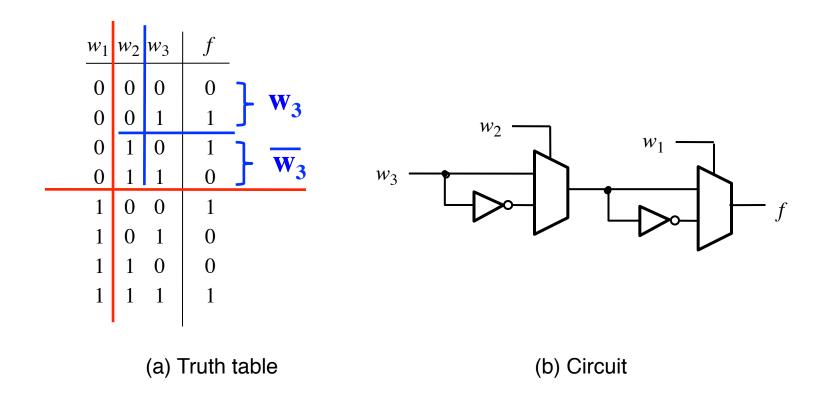
	f	w_3	w_2	w_1
	0	0	0	0
4 141	$1 \downarrow \dots \subseteq$	1	0	0
$\oplus w_3$	$1 \int_{0}^{w_2 \cdot u}$	0	1	0
	0	1	1	0
	1	0	0	1
$\oplus w_3$	$0 \sqrt{{w_0}}$	1	0	1
, • w3	0	0	1	1
	1	1	1	1

w_1	$w_2 w_3$	
0	0 0	0
0	0 1	1 \ w_* \ \ w_*
0	1 0	$1 w_2 \oplus w_3$
0	1 1	0
1	0 0	1
1	0 1	$0 \setminus \frac{1}{w_2 \oplus w_3}$
1	1 0	$0 \begin{pmatrix} w_2 \cup w_3 \\ \end{pmatrix}$
1	1 1	1

(a) Truth table



(b) Circuit



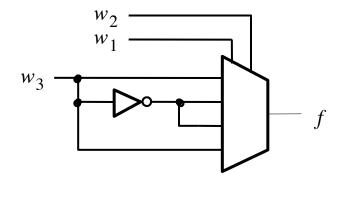
w_1	w_2	w_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

w_1	w_2	w_3	f	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	
		•		

	_	f	w_3	w_2	w_1
141	_ [0	0	0	0
w_3	5	1	1	0	0
\overline{w}_3	Ì	1	0	1	0
w 3	5	0	1	1	0
\overline{w}_3	ļ	1	0	0	1
w 3	J	0	1	0	1
142 -	1	0	0	1	1
w_3	J	1	1	1	1
			١		

w_1	w_2	w_3	f
0	0	0	0 } ,,,
0	0	1	$\left\{\begin{array}{c}0\\1\end{array}\right\} w_3$
0	1	0	$\left\{\begin{array}{c}1\\0\end{array}\right\}\overline{w}_3$
0	1	1	0 $\sqrt{3}$
1	0	0	$\left\{\begin{array}{c}1\\0\end{array}\right\}$
1	0	1	0 $\sqrt{3}$
1	1	0	0
1	1	1	$\begin{cases} 0 \\ 1 \end{cases} $ $\begin{cases} w_3 \end{cases}$

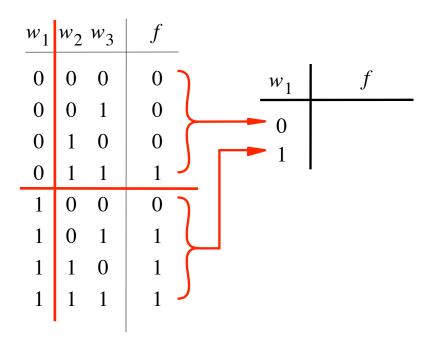
(a) Truth table

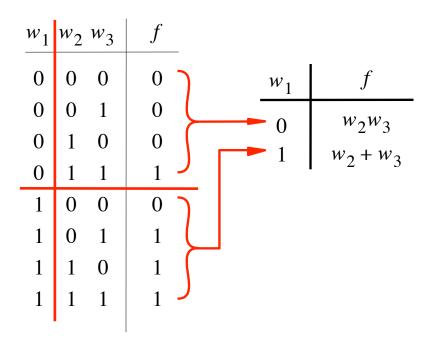


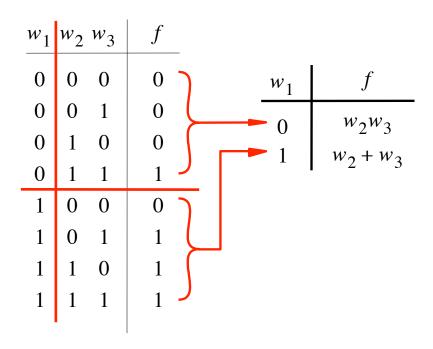
(b) Circuit

Multiplexor Synthesis Using Shannon's Expansion

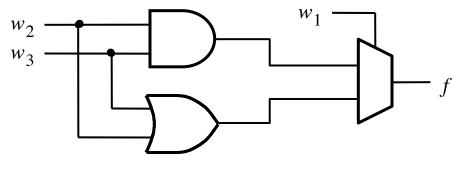
w_1	w_2	w_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1







(b) Truth table



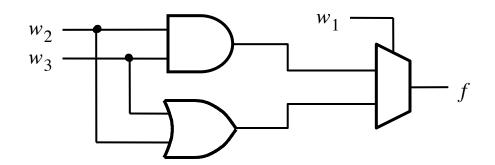
(b) Circuit

[Figure 4.10a from the textbook]

$$f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
cofactor cofactor

Shannon's Expansion Theorem (Example)

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

Shannon's Expansion Theorem (Example)

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$$

Shannon's Expansion Theorem (Example)

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$$

$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

Shannon's Expansion Theorem (In terms of more than one variable)

$$f(w_1, \dots, w_n) = \overline{w}_1 \overline{w}_2 \cdot f(0, 0, w_3, \dots, w_n) + \overline{w}_1 w_2 \cdot f(0, 1, w_3, \dots, w_n) + w_1 \overline{w}_2 \cdot f(1, 0, w_3, \dots, w_n) + w_1 w_2 \cdot f(1, 1, w_3, \dots, w_n)$$

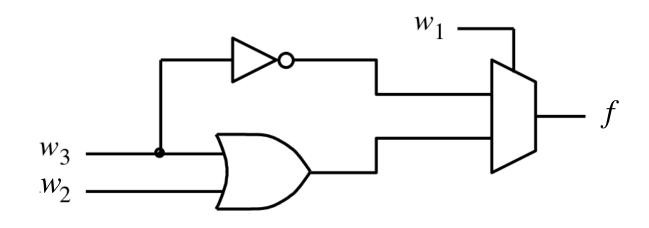
This form is suitable for implementation with a 4x1 multiplexer.

Another Example

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$



$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$

Factor and implement the following function with a 4x1 multiplexer

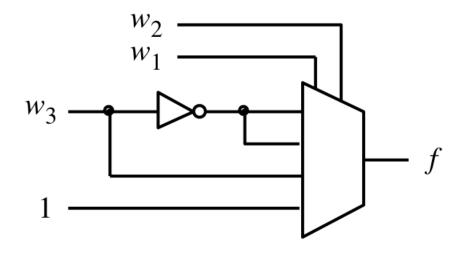
$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

Factor and implement the following function with a 4x1 multiplexer

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Factor and implement the following function with a 4x1 multiplexer



$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Yet Another Example

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

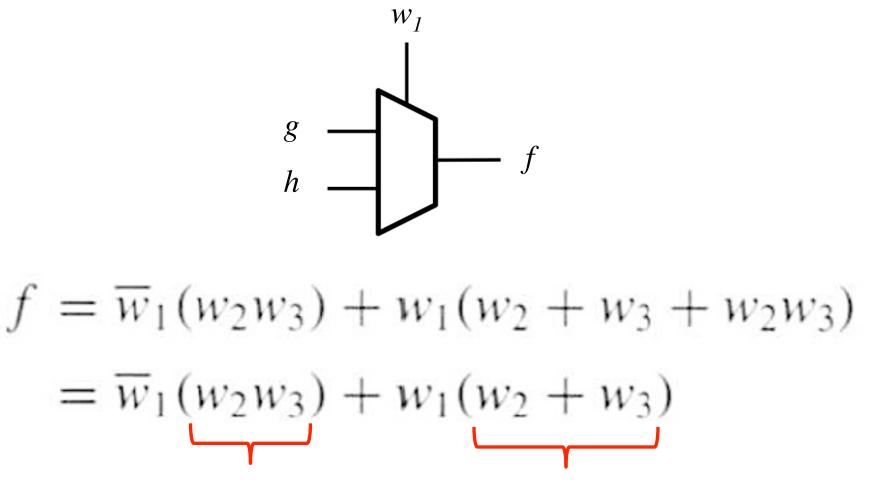
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

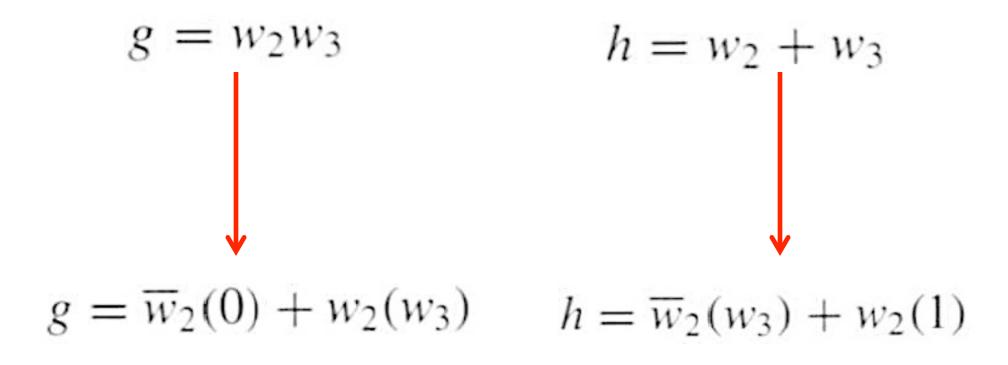
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
$$g = w_2w_3 \qquad h = w_2 + w_3$$

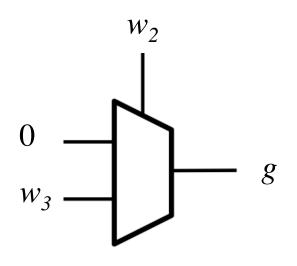
 $g = w_2 w_3$ $h = w_2 + w_3$

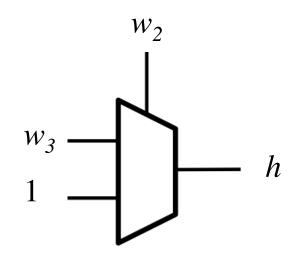


$$g = w_2 w_3$$

$$h = w_2 + w_3$$

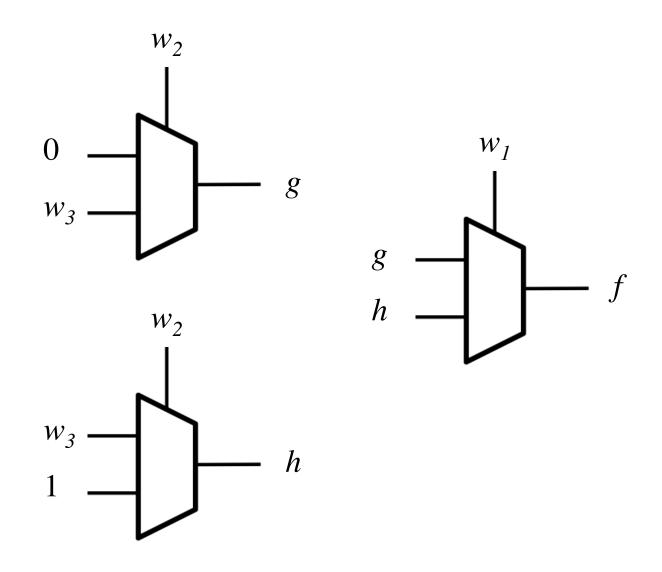




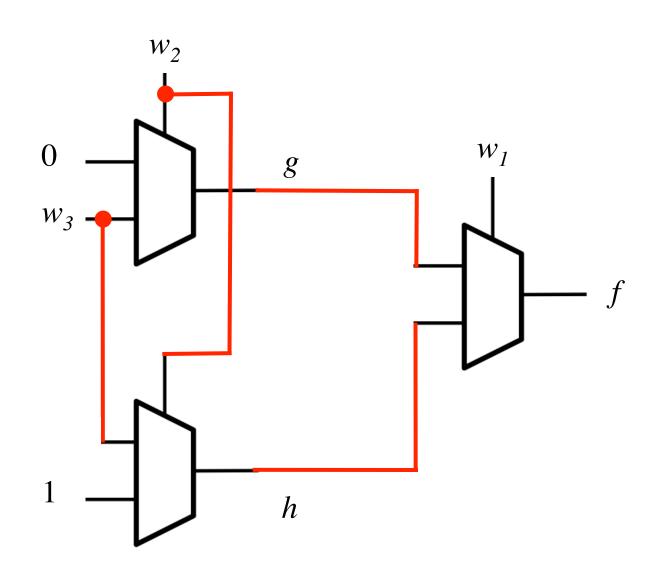


$$g = \overline{w}_2(0) + w_2(w_3)$$
 $h = \overline{w}_2(w_3) + w_2(1)$

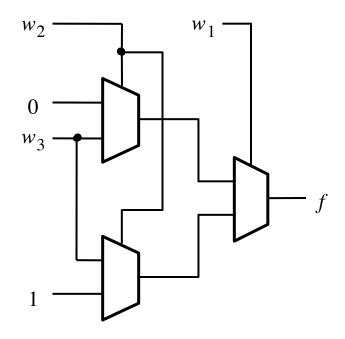
Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



Questions?

THE END