

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Decoders and Encoders

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

HW 6 is due today

Administrative Stuff

• HW 7 is out

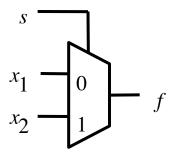
It is due next Monday (Oct 19)

Administrative Stuff

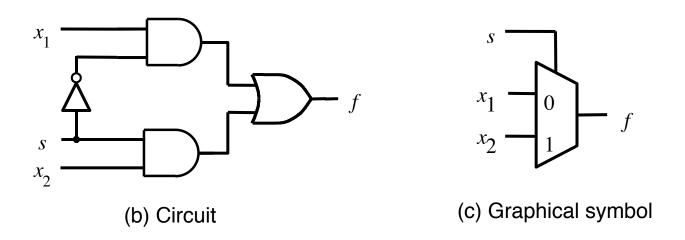
- Midterm Grades are Due this Friday
- only grades of C-, D, F have to be submitted to the registrar's office

Quick Review

Graphical Symbol for a 2-1 Multiplexer

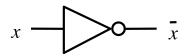


Circuit for 2-1 Multiplexer



$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

The Three Basic Logic Gates



$$x_1$$
 x_2
 $x_1 \cdot x_2$

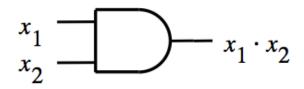
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $\begin{bmatrix} x_1 + x_2 \end{bmatrix}$

NOT gate

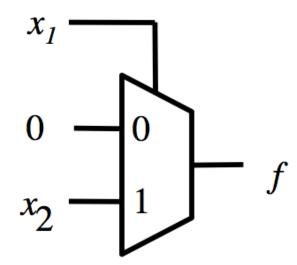
AND gate

OR gate

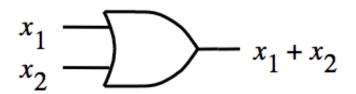
Building an AND Gate with 2-to-1 Mux



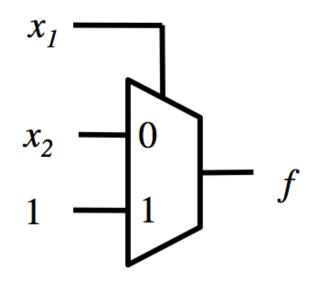
	x_1	x_2	$x_1 \cdot x_2$
	0	0 1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
-	1 1	0 1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ X_2



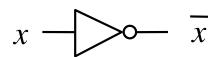
Building an OR Gate with 2-to-1 Mux



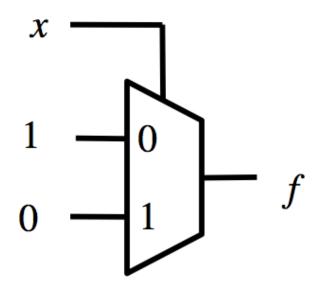
	x_1	x_2	$x_1 + x_2$
	0	0 1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ \mathbf{x}_2
•	1 1	$0 \\ 1$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1



Building a NOT Gate with 2-to-1 Mux



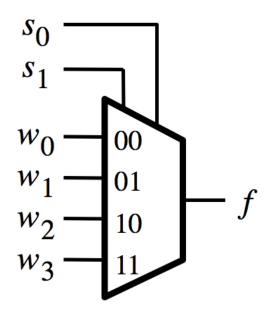
\mathcal{X}	\overline{x}
0	1
1	0



Implications

Any Boolean function can be implemented using only 2-to-1 multiplexers!

4-to-1 Multiplexer: Graphical Symbol and Truth Table

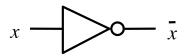


(a)	Gra	phic :	syml	ool

s_1	s_0	f
0	0	w_0
0	1	w_1
1	0	w_2
1	1	w_3

(b) Truth table

The Three Basic Logic Gates



$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow x_1 \cdot x_2$$

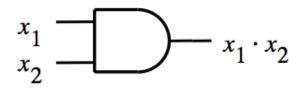
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $\begin{bmatrix} x_1 + x_2 \end{bmatrix}$

NOT gate

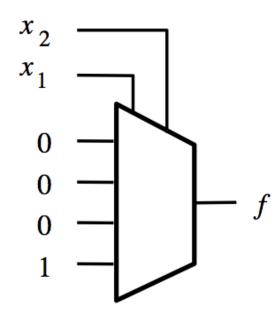
AND gate

OR gate

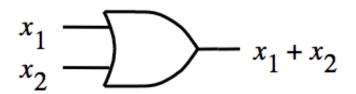
Building an AND Gate with 4-to-1 Mux



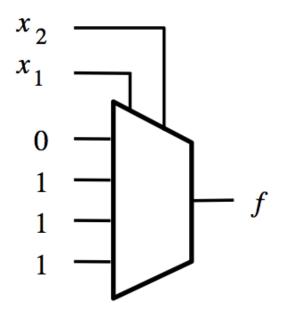
x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1



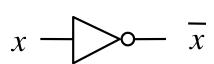
Building an OR Gate with 4-to-1 Mux



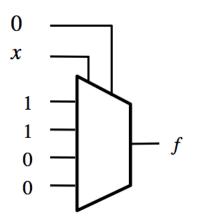
x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1

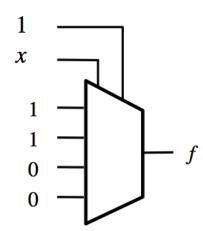


Building a NOT Gate with 4-to-1 Mux



\mathcal{X}	\overline{x}
0	1
1	0



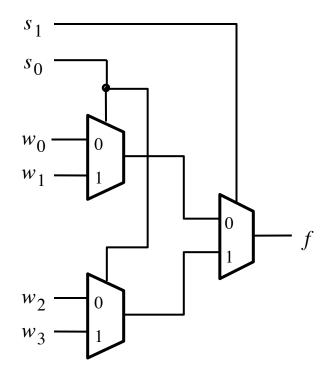


Two alternative solutions.

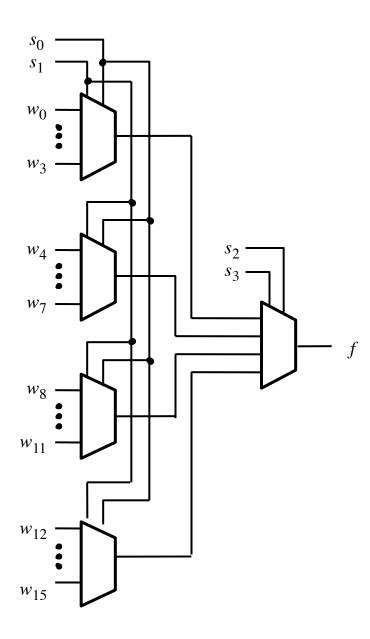
Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer



16-1 Multiplexer

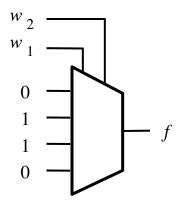


[Figure 4.4 from the textbook]

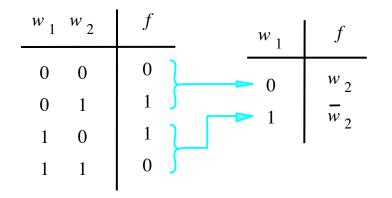
Synthesis of Logic Circuits Using Multiplexers

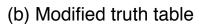
Implementation of a logic function with a 4x1 multiplexer

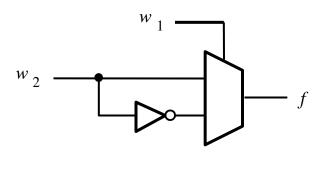
<i>w</i> 1	w_2	f
0	0	0
0	1	1
1	0	1
1	1	0



Implementation of the same logic function with a 2x1 multiplexer

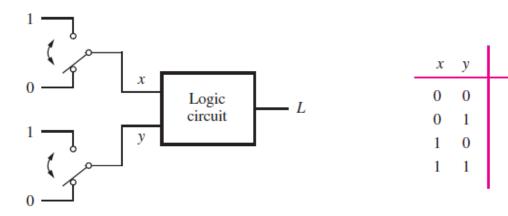






(c) Circuit

The XOR Logic Gate

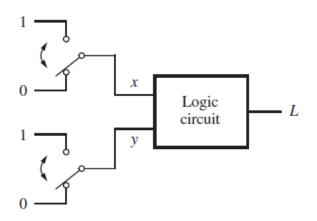


(a) Two switches that control a light

(b) Truth table

L

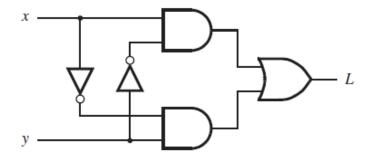
The XOR Logic Gate



x	у	L
0	0	0
0	1	1
1	0	1
1	1	0

(a) Two switches that control a light

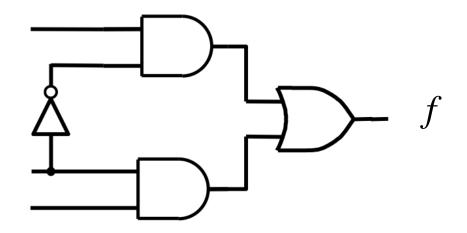
(b) Truth table



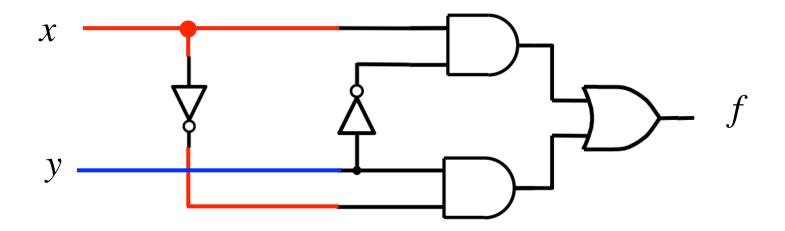
(c) Logic network

(d) XOR gate symbol

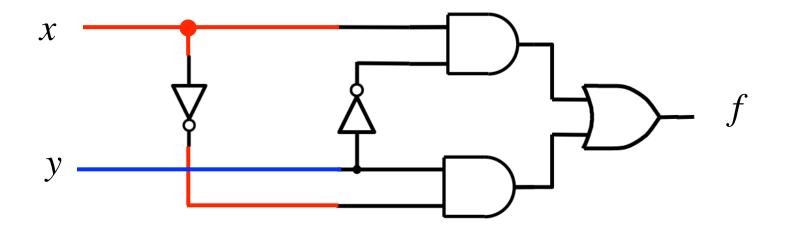
The XOR Logic Gate Implemented with a multiplexer



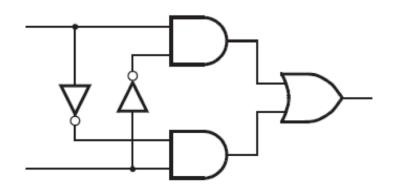
The XOR Logic Gate Implemented with a multiplexer



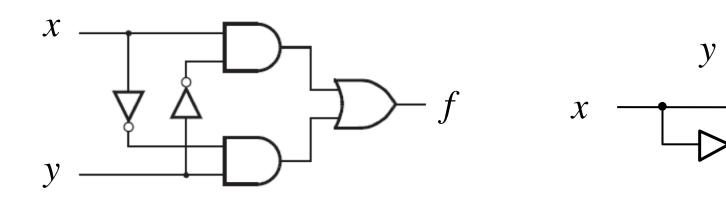
The XOR Logic Gate Implemented with a multiplexer



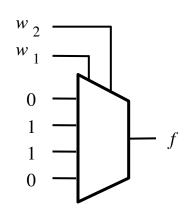
These two circuits are equivalent (the wires of the bottom and gate are flipped)



In other words, all four of these are equivalent!







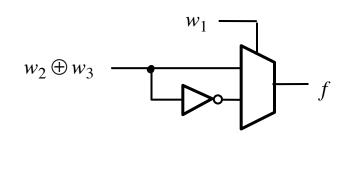
Another Example (3-input XOR)

w_1	w_2	w_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

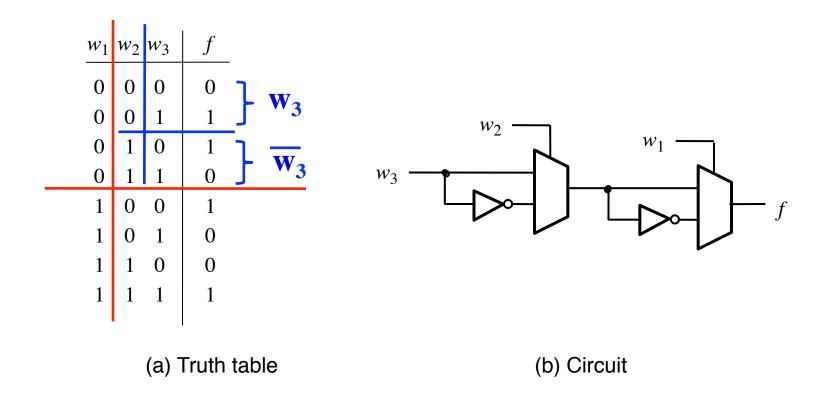
	f_{-}	w_3	w_2	w_1
	0	0	0	0
4 142 -	1	1	0	0
$\oplus w_3$	$1 \int_{0}^{w_2 \cup w_2 \cup w_2}$	0	1	0
	0	1	1	0
	1)	0	0	1
$\oplus w_3$	$0 \left(\frac{1}{w_0} \right)$	1	0	1
© 11 3	0	0	1	1
	1	1	1	1

w_1	$w_2 w_3$	f
0	0 0	0)
0	0 1	1
0	1 0	$1 w_2 \oplus w_3$
0	1 1	0
1	0 0	1
1	0 1	$0 \setminus \frac{1}{w_2 \oplus w_3}$
1	1 0	$0 \begin{pmatrix} w_2 \cup w_3 \\ \end{pmatrix}$
1	1 1	1

(a) Truth table



(b) Circuit



w_1	w_2	w_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with a 4-to-1 Multiplexer

-	w_1	w_2	w_3	f	
	0	0	0	0	
	0	0	1	1	
	0	1	0	1	
	0	1	1	0	
	1	0	0	1	
	1	0	1	0	
	1	1	0	0	
	1	1	1	1	
			'		

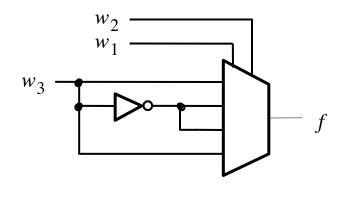
Implementation of 3-input XOR with a 4-to-1 Multiplexer

	_	f	w_3	w_2	w_1
141	_	0	0	0	0
w_3	5	1	1	0	0
\overline{w}_3	Ì	1	0	1	0
w 3	5	0	1	1	0
\overline{w}_3	ļ	1	0	0	1
w 3	5	0	1	0	1
Wa	1	0	0	1	1
w_3	J	1	1	1	1
			•		

Implementation of 3-input XOR with a 4-to-1 Multiplexer

w_1	w_2	w_3	f
0	0	0	0 } ,,,
0	0	1	$\left\{\begin{array}{c}0\\1\end{array}\right\} w_3$
0	1	0	$\left\{\begin{array}{c}1\\0\end{array}\right\}$
0	1	1	0 \ "3
1	0	0	$\left\{\begin{array}{c}1\\0\end{array}\right\}$
1	0	1	0 \ "3
1	1	0	0 } w
1	1	1	$\left\{\begin{array}{c}0\\1\end{array}\right\} w_3$

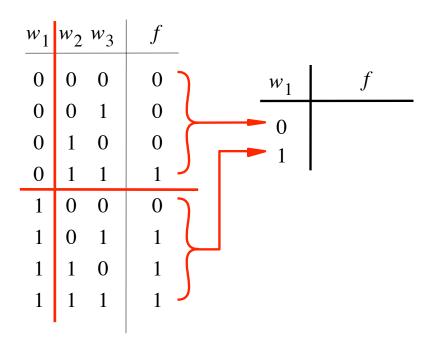
(a) Truth table

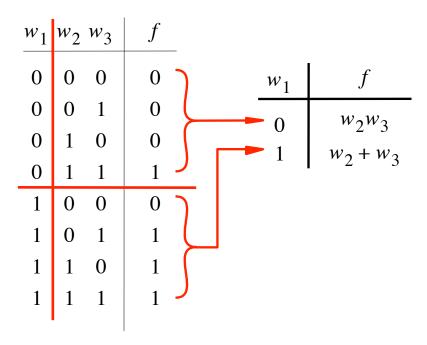


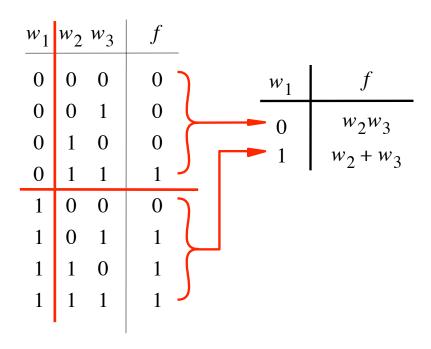
(b) Circuit

Multiplexor Synthesis Using Shannon's Expansion

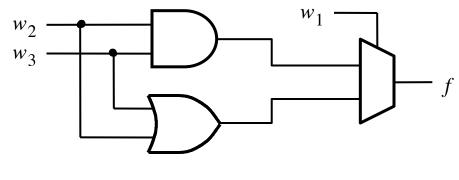
w_1	w_2	w_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1







(b) Truth table



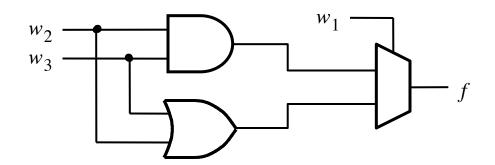
(b) Circuit

[Figure 4.10a from the textbook]

$$f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
cofactor cofactor

Shannon's Expansion Theorem (Example)

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

Shannon's Expansion Theorem (Example)

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$$

Shannon's Expansion Theorem (Example)

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$$

$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

Shannon's Expansion Theorem (In terms of more than one variable)

$$f(w_1, \dots, w_n) = \overline{w}_1 \overline{w}_2 \cdot f(0, 0, w_3, \dots, w_n) + \overline{w}_1 w_2 \cdot f(0, 1, w_3, \dots, w_n) + w_1 \overline{w}_2 \cdot f(1, 0, w_3, \dots, w_n) + w_1 w_2 \cdot f(1, 1, w_3, \dots, w_n)$$

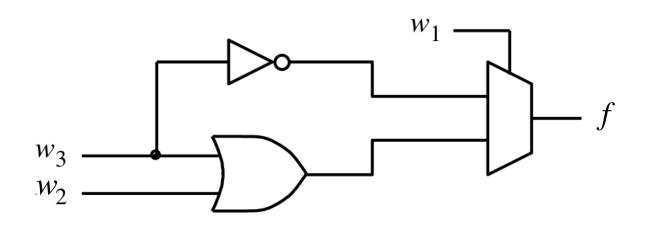
This form is suitable for implementation with a 4x1 multiplexer.

Another Example

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$



$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$

Factor and implement the following function with a 4x1 multiplexer

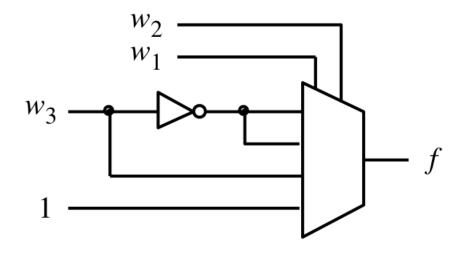
$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

Factor and implement the following function with a 4x1 multiplexer

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Factor and implement the following function with a 4x1 multiplexer



$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Yet Another Example

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

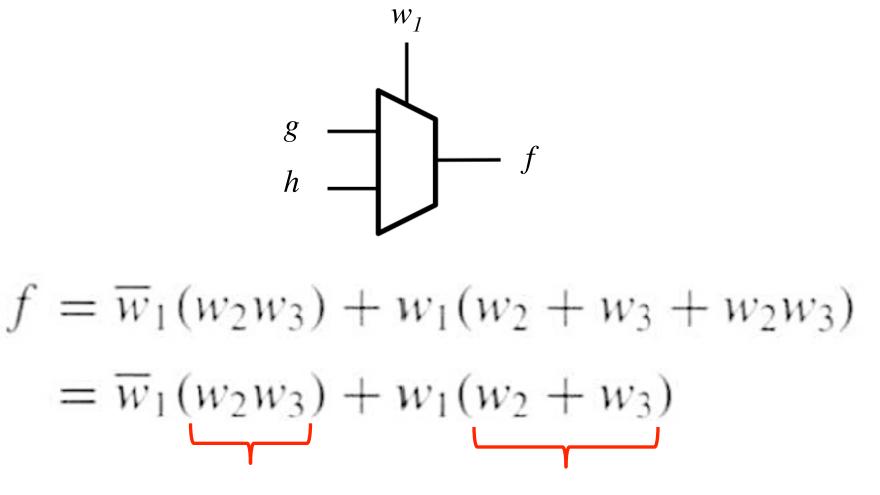
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

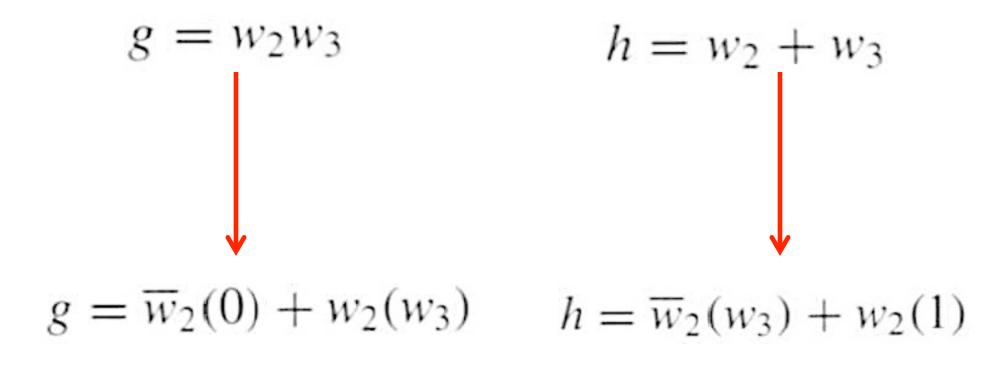
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
$$g = w_2w_3 \qquad h = w_2 + w_3$$

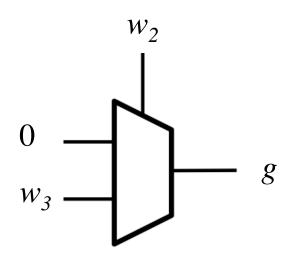
 $g = w_2 w_3$ $h = w_2 + w_3$

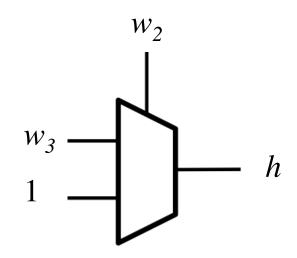


$$g = w_2 w_3$$

$$h = w_2 + w_3$$

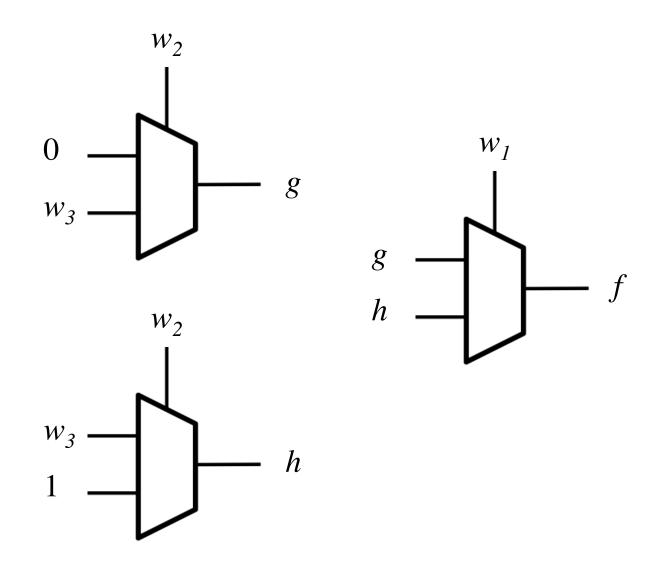




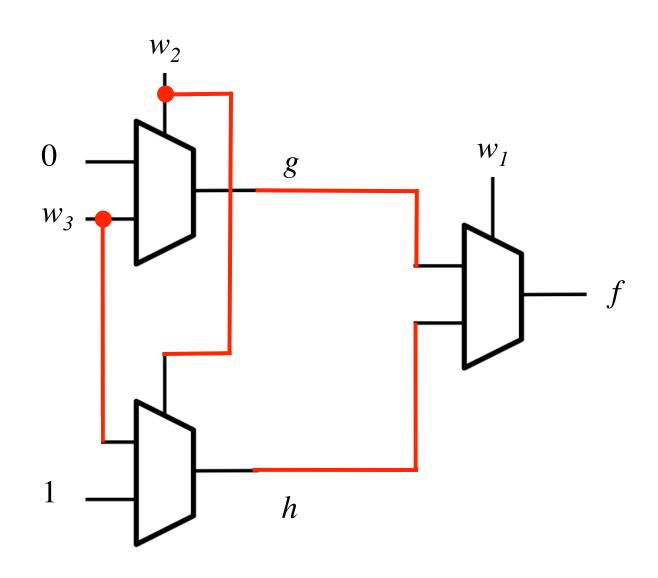


$$g = \overline{w}_2(0) + w_2(w_3)$$
 $h = \overline{w}_2(w_3) + w_2(1)$

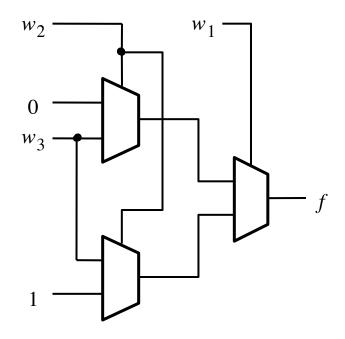
Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



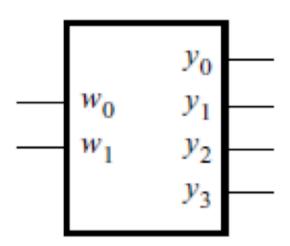
Decoders

2-to-4 Decoder (Definition)

- Has two inputs: w₁ and w₀
- Has four outputs: y₀, y₁, y₂, and y₃
- If $w_1=0$ and $w_0=0$, then the output y_0 is set to 1
- If $w_1=0$ and $w_0=1$, then the output y_1 is set to 1
- If $w_1=1$ and $w_0=0$, then the output y_2 is set to 1
- If w₁=1 and w₀=1, then the output y₃ is set to 1
- Only one output is set to 1. All others are set to 0.

Truth Table and Graphical Symbol for a 2-to-4 Decoder

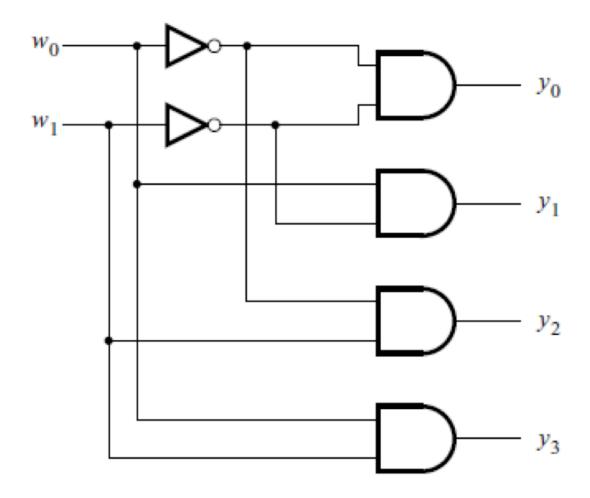
w_1	w_0	y_0	y_1	y_2	y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1



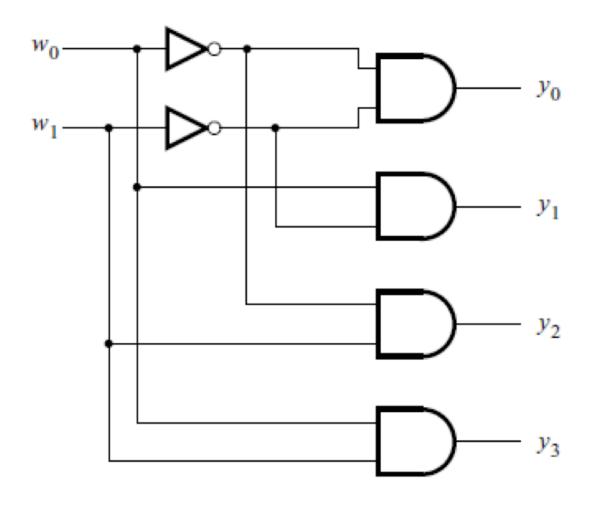
(a) Truth table

(b) Graphical symbol

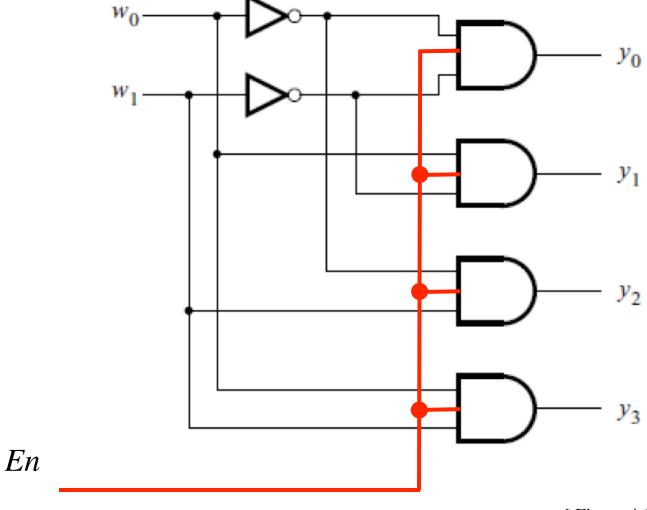
Truth Logic Circuit for a 2-to-4 Decoder



Adding an Enable Input



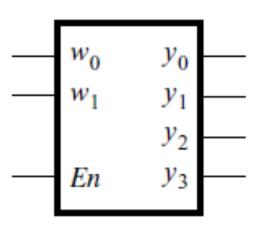
Adding an Enable Input



[Figure 4.13c from the textbook]

Truth Table and Graphical Symbol for a 2-to-4 Decoder with an Enable Input

En	w_1	w_0	y_0	y_1	y_2	y_3
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0



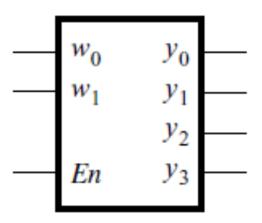
(a) Truth table

(b) Graphical symbol

Truth Table and Graphical Symbol for a 2-to-4 Decoder with an Enable Input

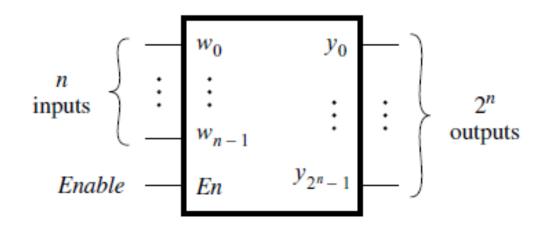
En	w_1	w_0	y_0	y_1	y_2	y_3	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	
0	Х	Х	0	0	0	0	
(a) Truth table							

x indicates that it does not matter what the value of these variable is for this row of the truth table



(b) Graphical symbol

Graphical Symbol for a Binary n-to-2ⁿ Decoder with an Enable Input



(d) An n-to-2ⁿ decoder

A binary decoder with n inputs has 2ⁿ outputs

The outputs of an enabled binary decoder are "one-hot" encoded, meaning that only a single bit is set to 1, i.e., it is *hot*.

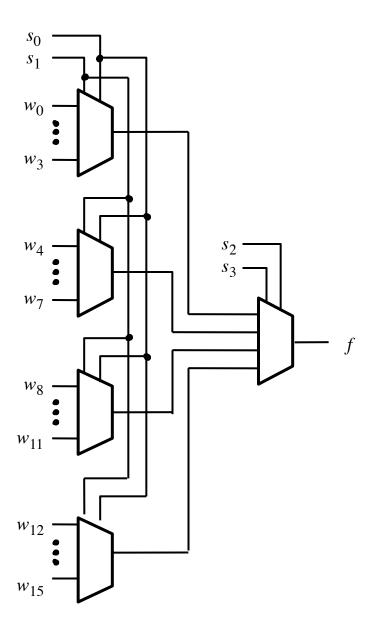
How can we build larger decoders?

• 3-to-8?

4-to-16?

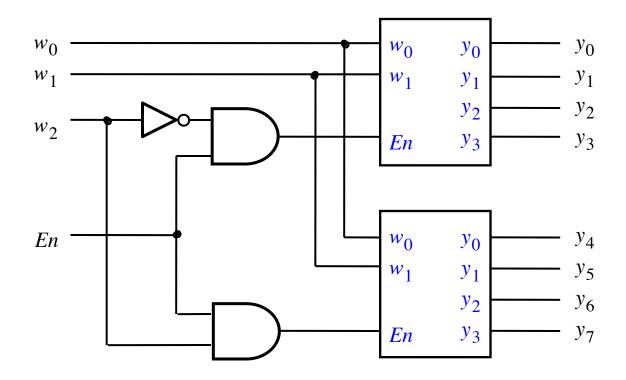
• 5-to-??

Hint: How did we build a 16-1 Multiplexer

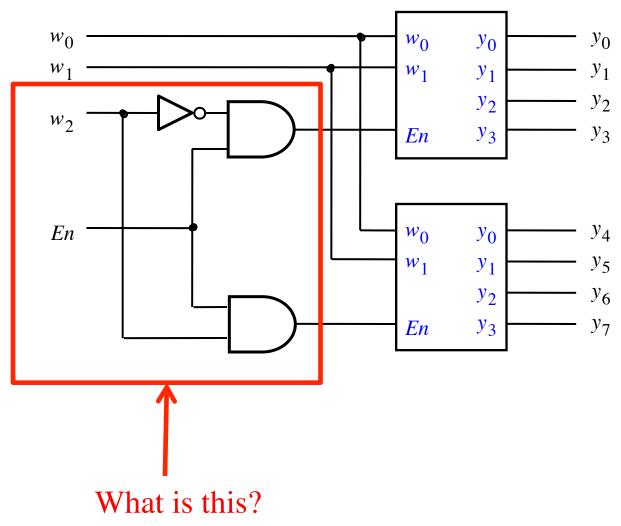


[Figure 4.4 from the textbook]

A 3-to-8 decoder using two 2-to-4 decoders

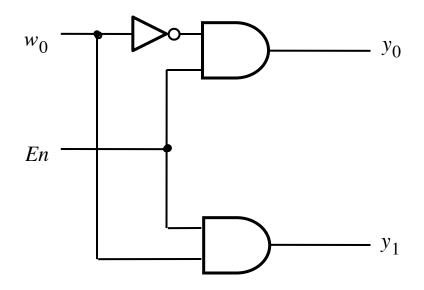


A 3-to-8 decoder using two 2-to-4 decoders

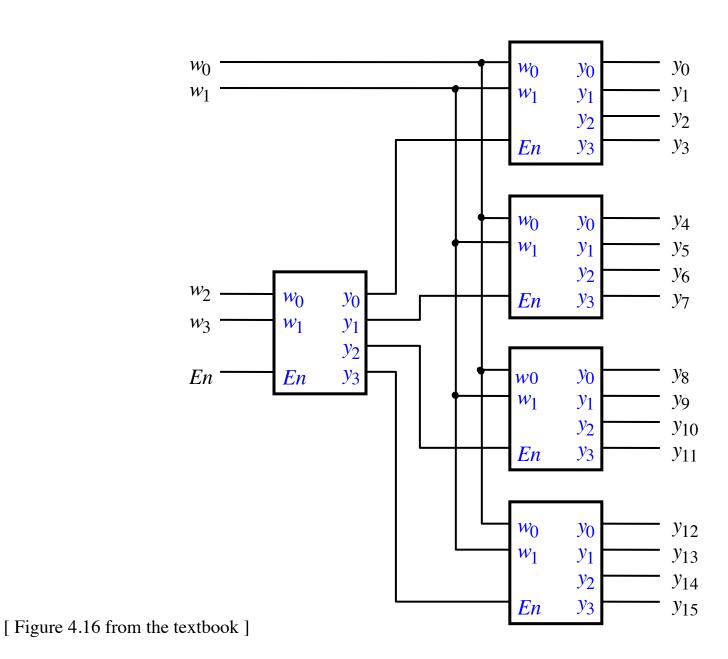


[Figure 4.15 from the textbook]

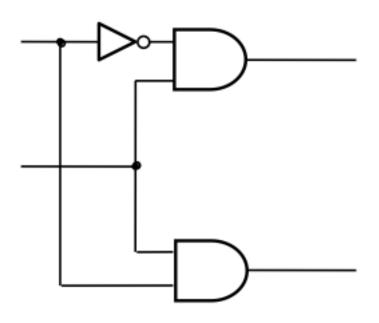
What is this?

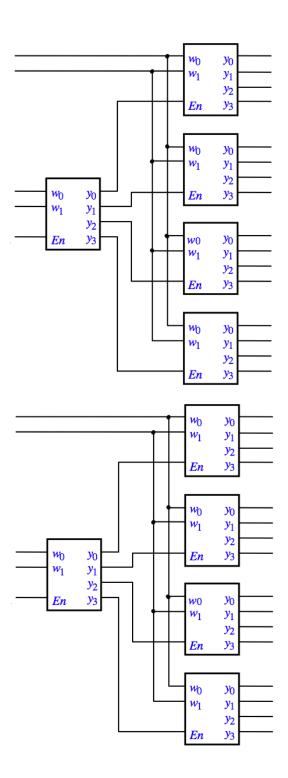


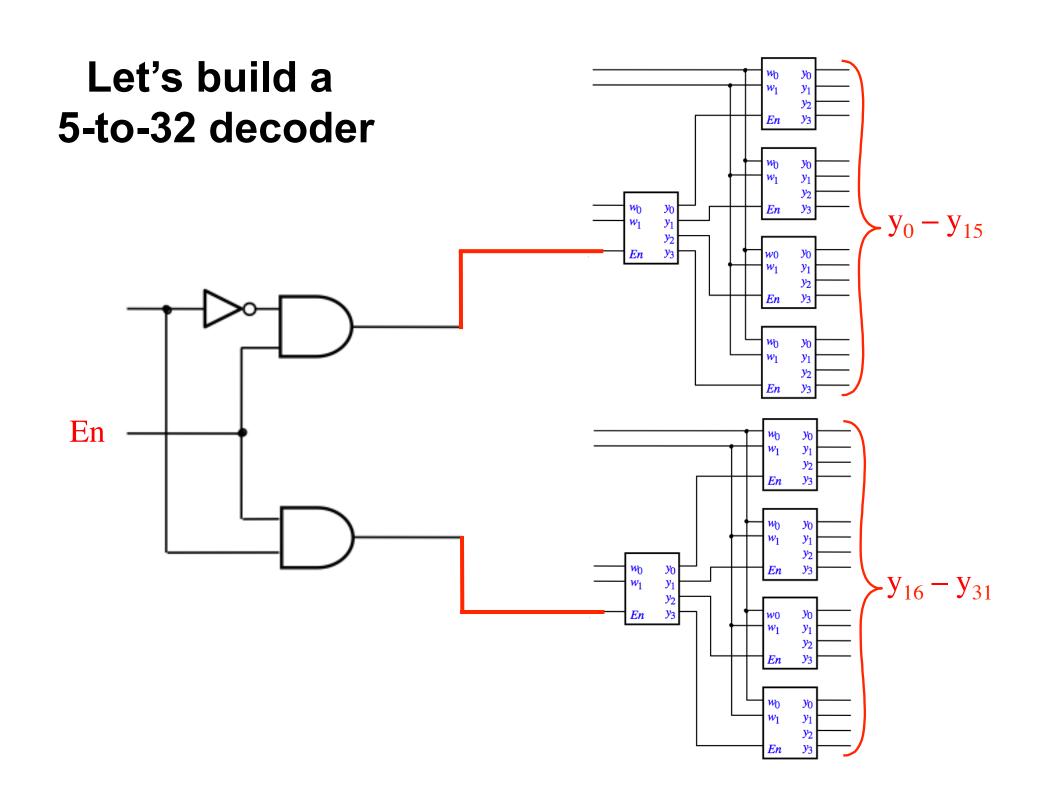
A 4-to-16 decoder built using a decoder tree

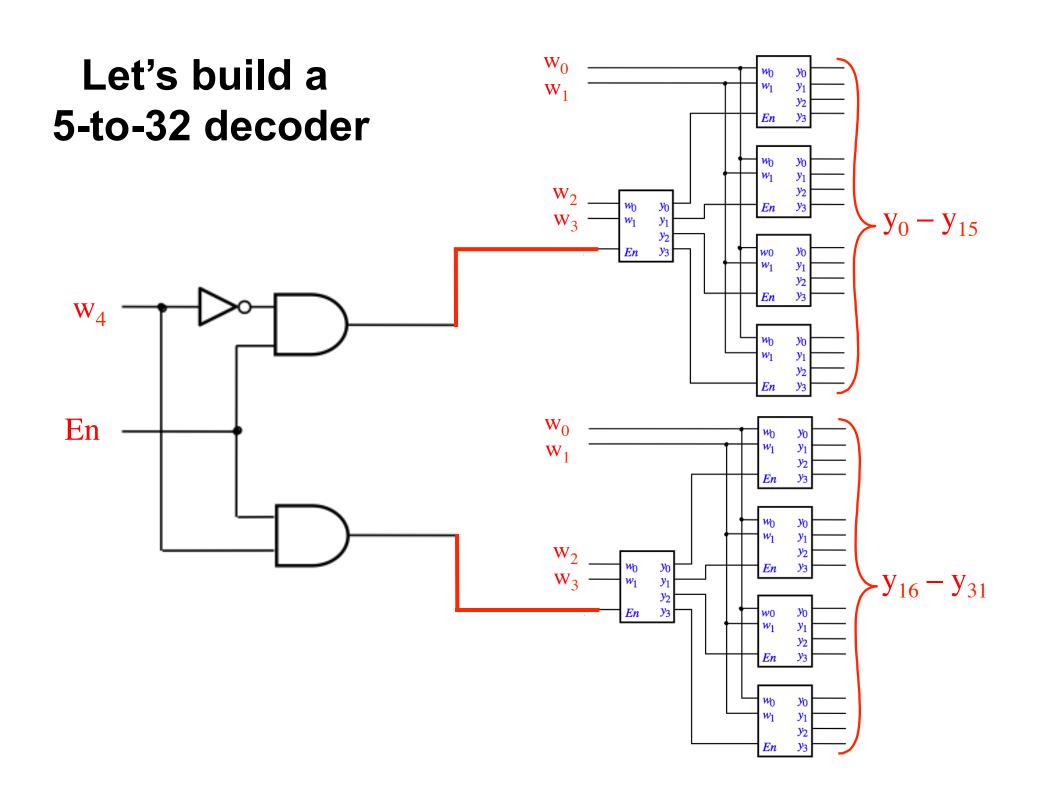


Let's build a 5-to-32 decoder







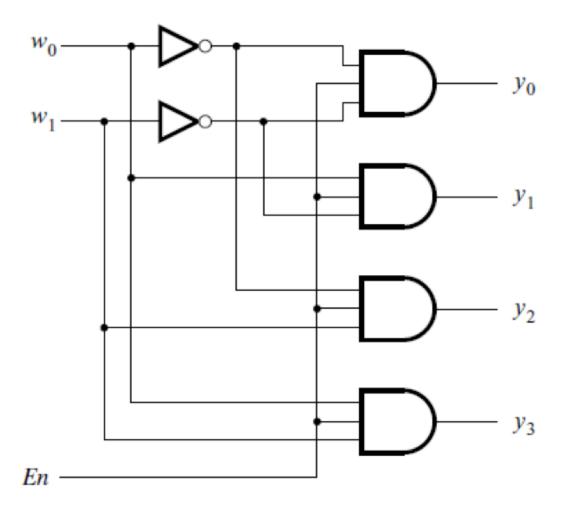


Demultiplexers

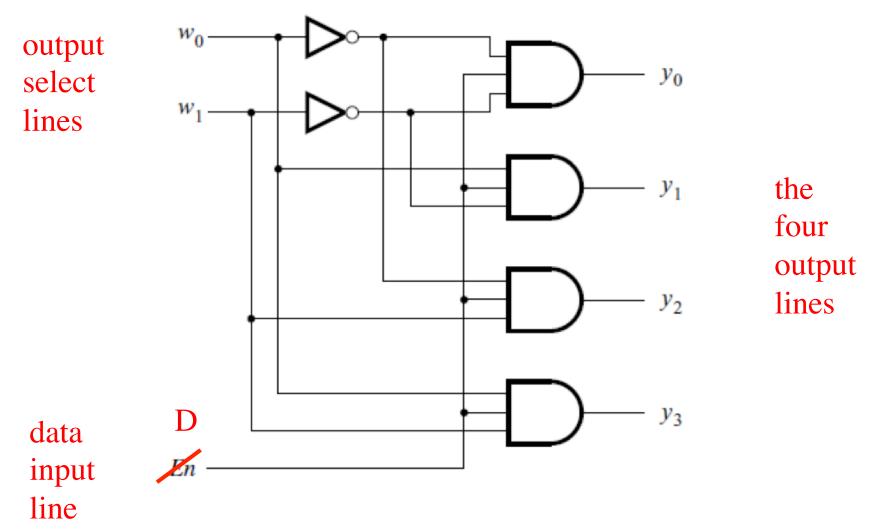
1-to-4 Demultiplexer (Definition)

- Has one data input line: D
- Has two output select lines: w₁ and w₀
- Has four outputs: y_0 , y_1 , y_2 , and y_3
- If $w_1=0$ and $w_0=0$, then the output y_0 is set to D
- If $w_1=0$ and $w_0=1$, then the output y_1 is set to D
- If $w_1=1$ and $w_0=0$, then the output y_2 is set to D
- If $w_1=1$ and $w_0=1$, then the output y_3 is set to D
- Only one output is set to D. All others are set to 0.

A 1-to-4 demultiplexer built with a 2-to-4 decoder



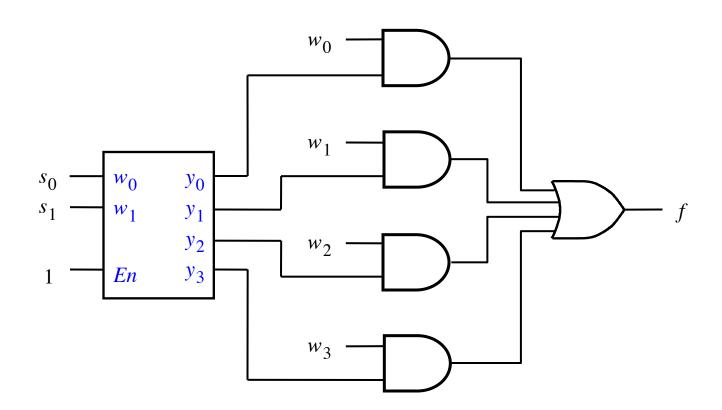
A 1-to-4 demultiplexer built with a 2-to-4 decoder



[Figure 4.14c from the textbook]

Multiplexers (Implemented with Decoders)

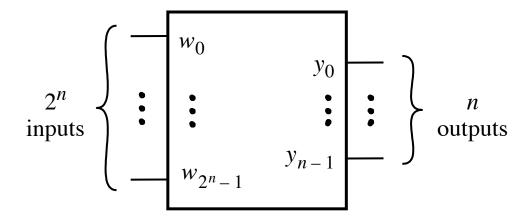
A 4-to-1 multiplexer built using a 2-to-4 decoder



Encoders

Binary Encoders

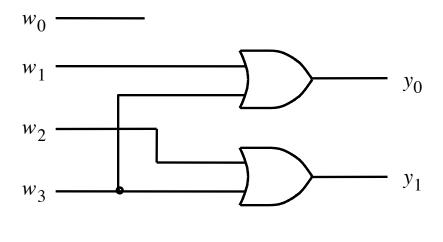
A 2ⁿ-to-n binary encoder



A 4-to-2 binary encoder

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table



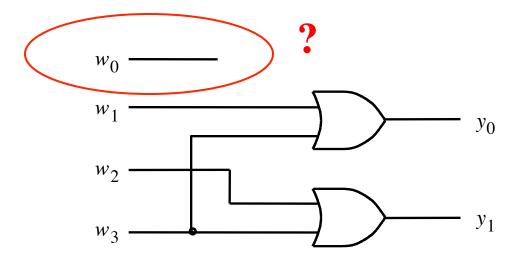
(b) Circuit

[Figure 4.19 from the textbook]

A 4-to-2 binary encoder

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table



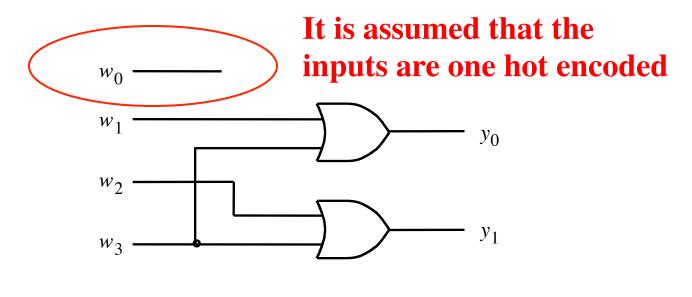
(b) Circuit

[Figure 4.19 from the textbook]

A 4-to-2 binary encoder

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table



(b) Circuit

Priority Encoders

Truth table for a 4-to-2 priority encoder

w_3	w_2	w_1	w_0	y_1	y_0	\mathcal{Z}
0	0	0	0	d	d	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Questions?

THE END