

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Code Converters

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• HW 7 is out

It is due next Monday (Oct 19) @ 4pm

Administrative Stuff

The second midterm is in 2 weeks.

Administrative Stuff

- Midterm Exam #2
- When: Friday October 30 @ 4pm.
- Where: This classroom
- What: Chapters 1, 2, 3, 4 and 5.1-5.8
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).

Midterm 2: Format

- The exam will be out of 130 points
- You need 95 points to get an A
- It will be great if you can score more than 100 points.
 - but you can't roll over your extra points ⊗

Quick Review

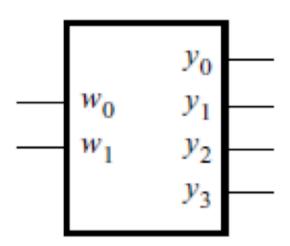
Decoders

2-to-4 Decoder (Definition)

- Has two inputs: w₁ and w₀
- Has four outputs: y₀, y₁, y₂, and y₃
- If $w_1=0$ and $w_0=0$, then the output y_0 is set to 1
- If $w_1=0$ and $w_0=1$, then the output y_1 is set to 1
- If $w_1=1$ and $w_0=0$, then the output y_2 is set to 1
- If w₁=1 and w₀=1, then the output y₃ is set to 1
- Only one output is set to 1. All others are set to 0.

Truth Table and Graphical Symbol for a 2-to-4 Decoder

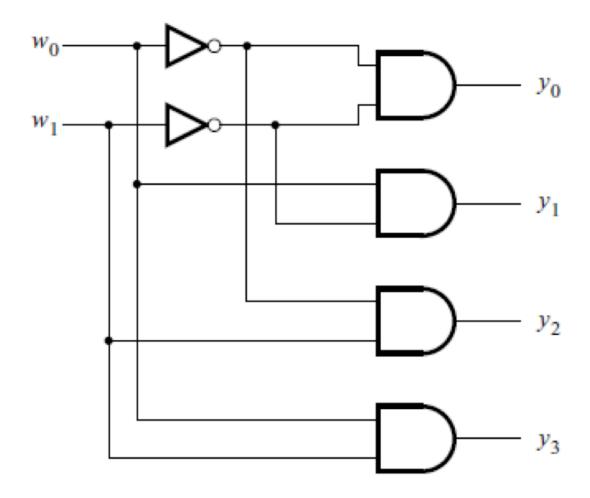
w_1	w_0	y_0	y_1	y_2	y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1



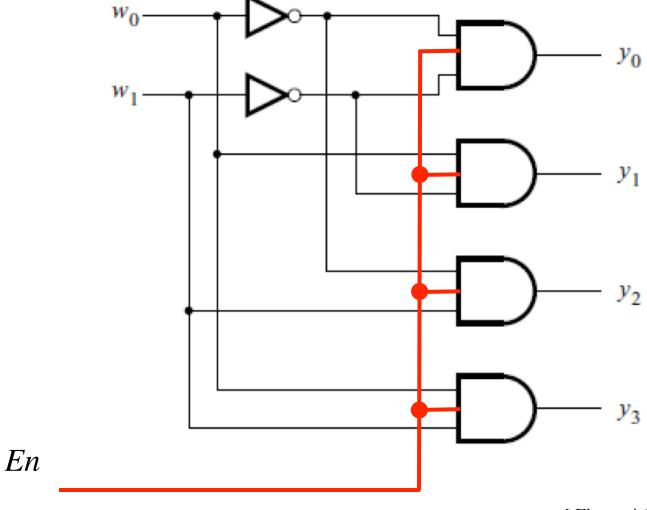
(a) Truth table

(b) Graphical symbol

Truth Logic Circuit for a 2-to-4 Decoder



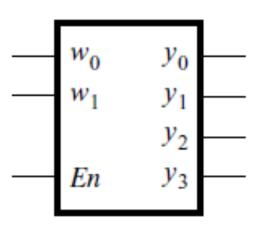
Adding an Enable Input



[Figure 4.13c from the textbook]

Truth Table and Graphical Symbol for a 2-to-4 Decoder with an Enable Input

En	w_1	w_0	y_0	y_1	y_2	y_3
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0



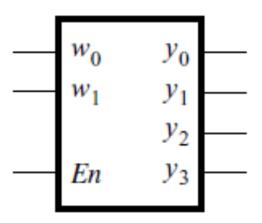
(a) Truth table

(b) Graphical symbol

Truth Table and Graphical Symbol for a 2-to-4 Decoder with an Enable Input

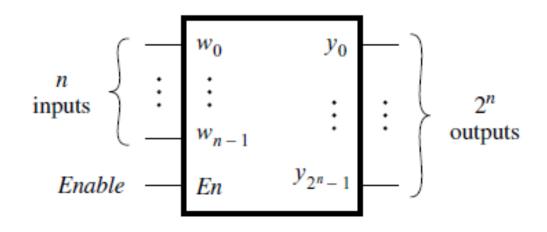
En	w_1	w_0	y_0	y_1	y_2	y_3	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	
0	Х	Х	0	0	0	0	
(a) Truth table							

x indicates that it does not matter what the value of these variable is for this row of the truth table



(b) Graphical symbol

Graphical Symbol for a Binary n-to-2ⁿ Decoder with an Enable Input

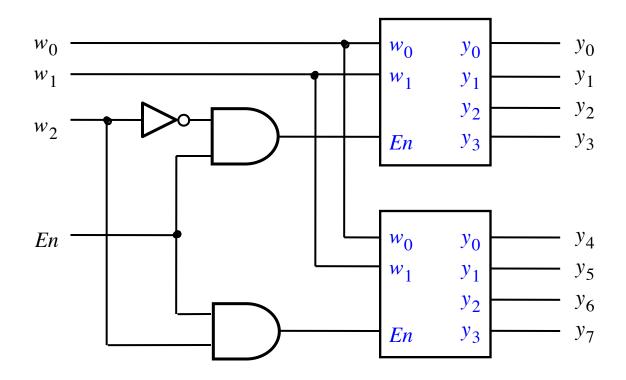


(d) An n-to-2ⁿ decoder

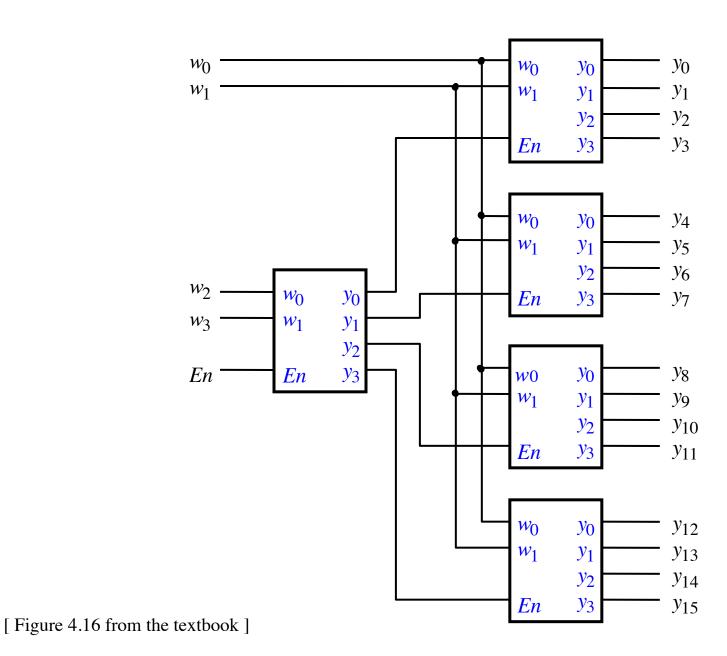
A binary decoder with n inputs has 2ⁿ outputs

The outputs of an enabled binary decoder are "one-hot" encoded, meaning that only a single bit is set to 1, i.e., it is *hot*.

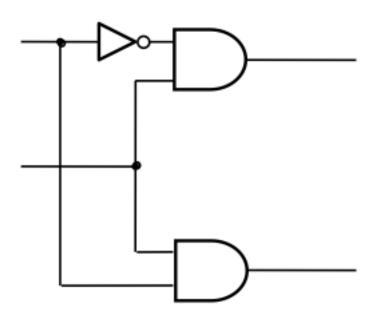
A 3-to-8 decoder using two 2-to-4 decoders

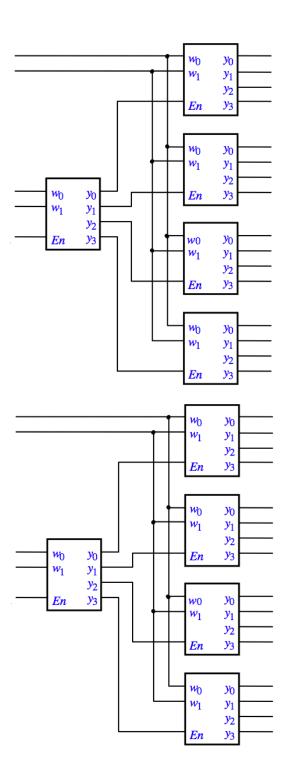


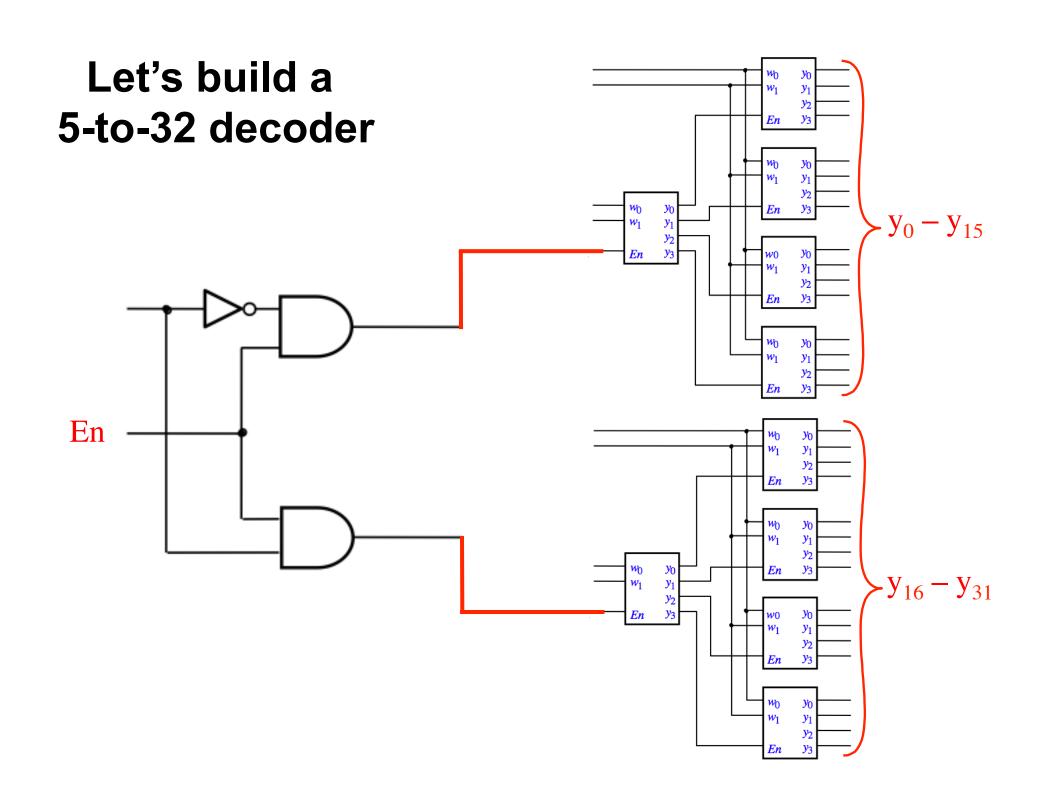
A 4-to-16 decoder built using a decoder tree

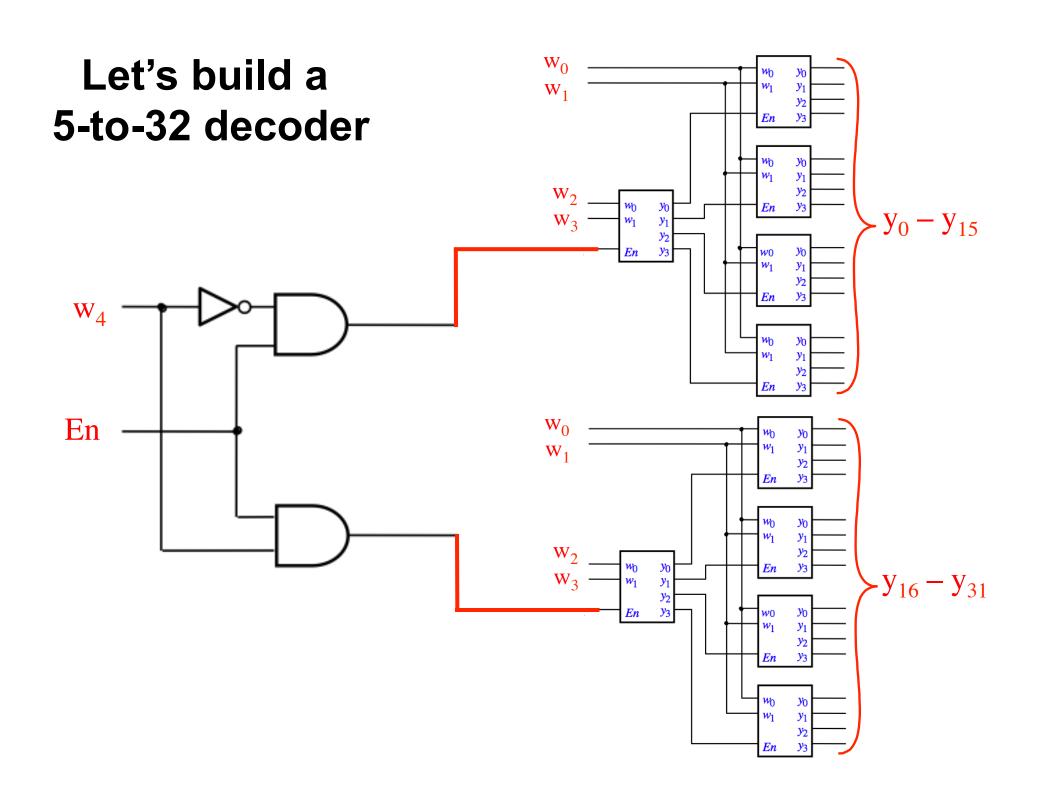


Let's build a 5-to-32 decoder







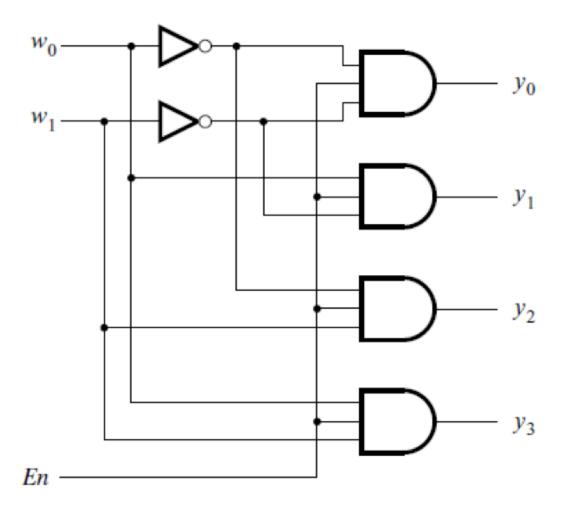


Demultiplexers

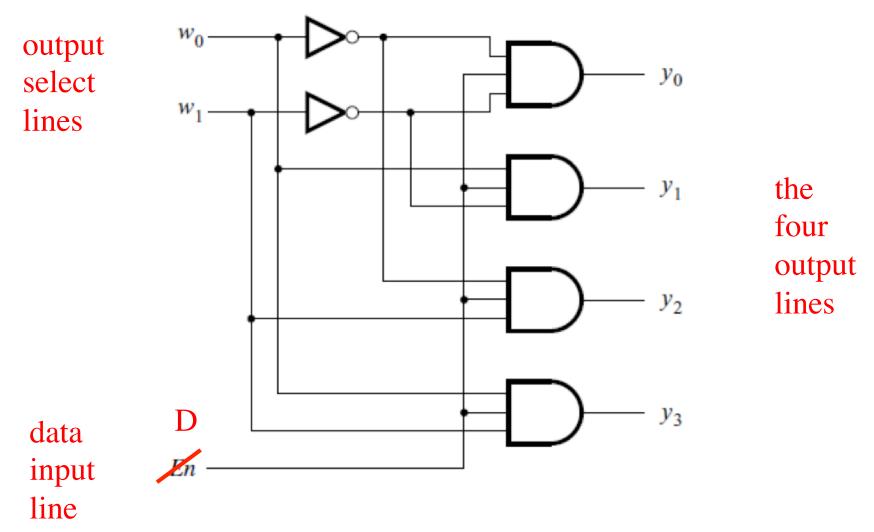
1-to-4 Demultiplexer (Definition)

- Has one data input line: D
- Has two output select lines: w₁ and w₀
- Has four outputs: y_0 , y_1 , y_2 , and y_3
- If $w_1=0$ and $w_0=0$, then the output y_0 is set to D
- If $w_1=0$ and $w_0=1$, then the output y_1 is set to D
- If $w_1=1$ and $w_0=0$, then the output y_2 is set to D
- If $w_1=1$ and $w_0=1$, then the output y_3 is set to D
- Only one output is set to D. All others are set to 0.

A 1-to-4 demultiplexer built with a 2-to-4 decoder



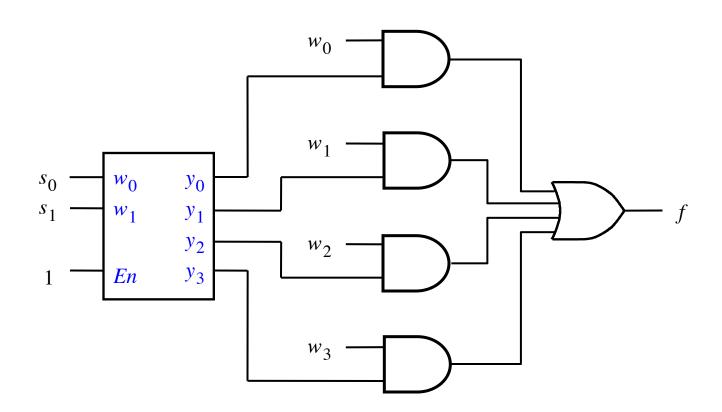
A 1-to-4 demultiplexer built with a 2-to-4 decoder



[Figure 4.14c from the textbook]

Multiplexers (Implemented with Decoders)

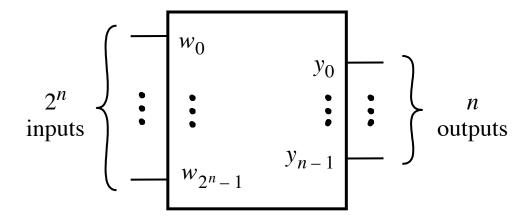
A 4-to-1 multiplexer built using a 2-to-4 decoder



Encoders

Binary Encoders

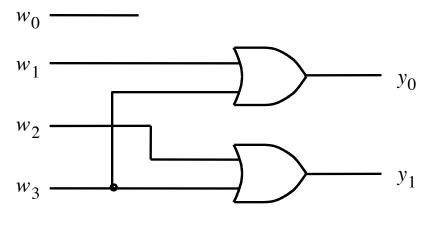
A 2ⁿ-to-n binary encoder



A 4-to-2 binary encoder

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table



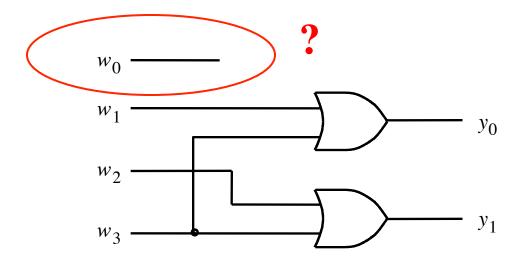
(b) Circuit

[Figure 4.19 from the textbook]

A 4-to-2 binary encoder

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table



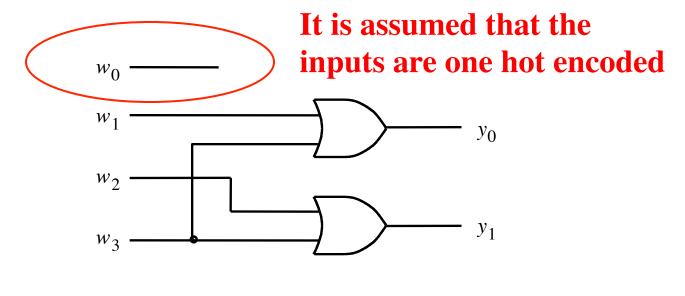
(b) Circuit

[Figure 4.19 from the textbook]

A 4-to-2 binary encoder

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table



(b) Circuit

[Figure 4.19 from the textbook]

Priority Encoders

Truth table for a 4-to-2 priority encoder

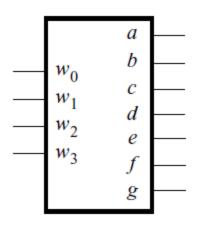
w_3	w_2	w_1	w_0	y_1	y_0	\mathcal{Z}
0	0	0	0	d	d	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

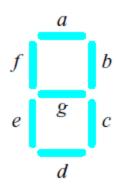
Code Converter (Definition)

 Converts from one type of input encoding to a different type of output encoding.

Code Converter (Definition)

- Converts from one type of input encoding to a different type of output encoding.
- A decoder does that as well, but its outputs are always one-hot encoded so the output code is really only one type of output code.
- A binary encoder does that as well but its inputs are always one-hot encoded so the input code is really only one type of input code.



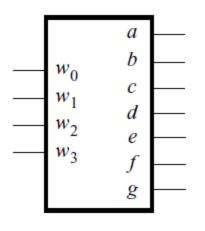


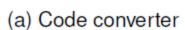
(a) Code converter

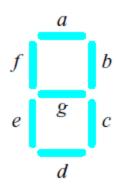
(b) 7-segment display

w_3	w_2	w_1	w_0	а	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

(c) Truth table



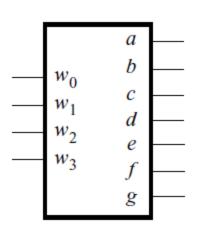


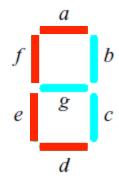


(b) 7-segment display

w_3	w_2	w_1	w_0	а	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

(c) Truth table

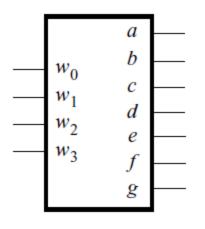


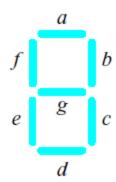


(a) Code converter

(b) 7-segment display

w_3	w_2	w_1	w_0	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1



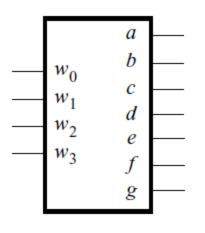


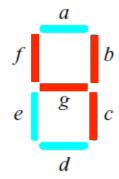
(a) Code converter

(b) 7-segment display

w_3	w_2	w_1	w_0	а	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

(c) Truth table





(a) Code converter

(b) 7-segment display

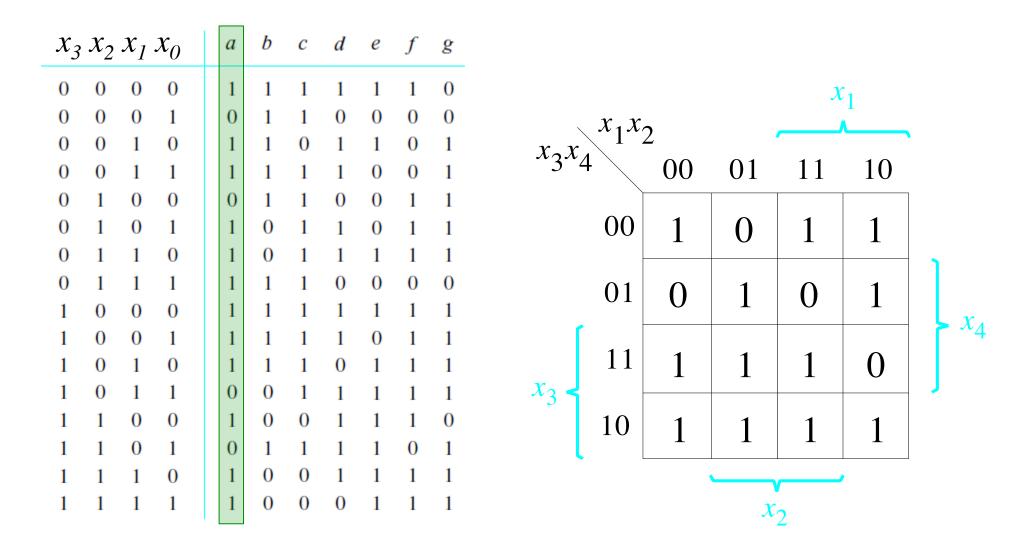
w_3	w_2	w_1	w_0	а	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

(c) Truth table

x_3	x_2	x_1	x_0	а	b	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

x_3	x_0	a	b	C	d	e	f	g		
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

 $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 15)$



 $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 15)$

x_3	x_2	x_1	x_0	а	b	c	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

x_3	x_2	x_1	x_0	a	b	c	d	e	f	g						
0	0	0	0	1	1	1	1	1	1	0				χ	⁄ 1	
0	0	0	1	0	1	1	0	0	0	0	x_1x				1	
0	0	1	0	1	1	0	1	1	0	1	x_3x_4					
0	0	1	1	1	1	1	1	0	0	1	3.4	00	01	11	10	
0	1	0	0	0	1	1	0	0	1	1	·					
0	1	0	1	1	0	1	1	0	1	1	00	1	0	1	1	
0	1	1	0	1	0	1	1	1	1	1						1
0	1	1	1	1	1	1	0	0	0	0	01	0	1	1	1	
1	0	0	0	1	1	1	1	1	1	1	•		1	1	.	- x ₄
1	0	0	1	1	1	1	1	0	1	1	1 1				4	4
1	0	1	0	1	1	1	0	1	1	1	11	1	0	0	1	
1	0	1	1	0	0	1	1	1	1	1	x_3					. ,
1	1	0	0	1	0	0	1	1	1	0	10	1	1	1	0	
1	1	0	1	0	1	1	1	1	0	1	l		_			
1	1	1	0	1	0	0	1	1	1	1						
1	1	1	1	1	0	0	0	1	1	1			$\boldsymbol{\mathcal{X}}$	2		

 $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 14)$

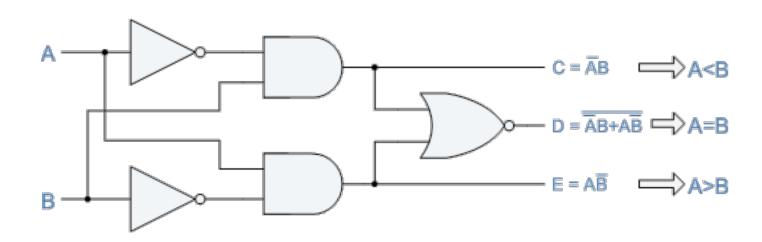
Arithmetic Comparison Circuits

Truth table for a one-bit digital comparator

Inp	uts	Outputs								
\overline{A}	B	A > B	A = B	A < B						
0	0	0	1	0						
0	1	0	0	1						
1	0	1	0	0						
1	1	0	1	0						

A one-bit digital comparator circuit

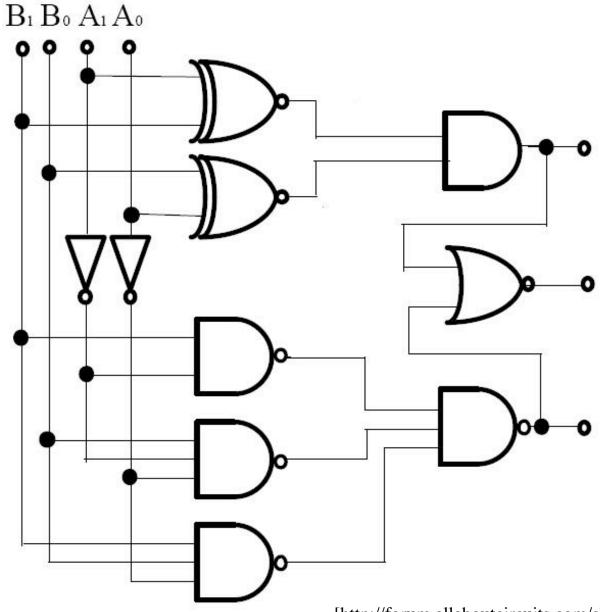
Inp	uts	Outputs								
\overline{A}	B	A > B	A = B	A < B						
0	0	0	1	0						
0	1	0	0	1						
1	0	1	0	0						
1	1	0	1	0						



Truth table for a two-bit digital comparator

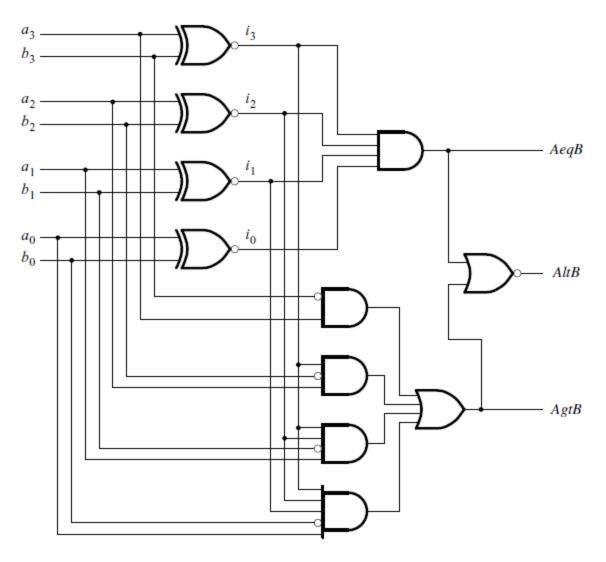
	Inp	uts		Outputs					
A_1	A_0	B_1	B_0	A < B	A = B	A > B			
0	0	0	0	0	1	0			
0	0	0	1	1	0	0			
0	0	1	0	1	0	0			
0	0	1	1	1	0	0			
0	1	0	0	0	0	1			
0	1	0	1	0	1	0			
0	1	1	0	1	0	0			
0	1	1	1	1	0	0			
1	0	0	0	0	0	1			
1	0	0	1	0	0	1			
1	0	1	0	0	1	0			
1	0	1	1	1	0	0			
1	1	0	0	0	0	1			
1	1	0	1	0	0	1			
1	1	1	0	0	0	1			
1	1	1	1	0	1	0			

A two-bit digital comparator circuit



[http://forum.allaboutcircuits.com/showthread.php?t=10561]

A four-bit comparator circuit



[Figure 4.22 from the textbook]

Example Problems from Chapter 4

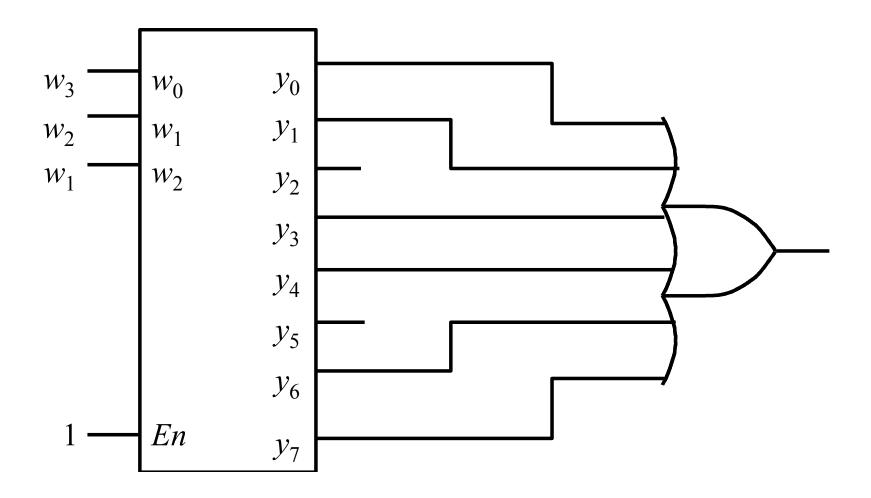
Example 1: SOP vs Decoders

Implement the function

$$f(w_1, w_2, w_3) = \Sigma m(0, 1, 3, 4, 6, 7)$$

by using a 3-8 binary decoder and one OR gate.

Solution Circuit



$$f(w_1, w_2, w_3) = \sum m(0, 1, 3, 4, 6, 7)$$

Example 2: Implement an 8-to-3 binary encoder

И	7	w_6	w_5	w_4	w_3	w_2	w_1	w_0	y_2	y_1	y_0
	0	0	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	1	0	0	0	1
	0	0	0	0	0	1	0	0	0	1	0
Ô	0	0	0	0	1	0	0	0	0	1	1
	0	0	0	1	0	0	0	0	1	0	0
ì	0	0	1	0	0	0	0	0	1	0	1
	0	1	0	0	0	0	0	0	1	1	0
	1	0	0	0	0	0	0	0	1	1	1

Example 2: Implement an 8-to-3 binary encoder

w_7	w_6	w_5	w_4	w_3	w_2	w_1	w_0	y_2	y_1	y_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$y_2 = w_4 + w_5 + w_6 + w_7$$

 $y_1 = w_2 + w_3 + w_6 + w_7$
 $y_0 = w_1 + w_3 + w_5 + w_7$

Example 3:Circuit implementation using a multiplexer

Implement the function

$$f(w_1, w_2, w_3, w_4, w_5) = \overline{w}_1 \overline{w}_2 \overline{w}_4 \overline{w}_5 + w_1 w_2 + w_1 w_3 + w_1 w_4 + w_3 w_4 w_5$$

using a 4-to-1 multiplexer

Some Boolean Algebra Leads To

$$\overline{w_{1}}\overline{w_{2}}\overline{w_{4}}\overline{w_{5}} + w_{1}w_{2} + w_{1}w_{3} + w_{1}w_{4} + w_{3}w_{4}w_{5}$$

$$\overline{w_{1}}\overline{w_{4}}(\overline{w_{5}}\overline{w_{2}}) + w_{4}(w_{3}w_{5}) + w_{1}(w_{2} + w_{3}) + w_{1}w_{4}(1)$$

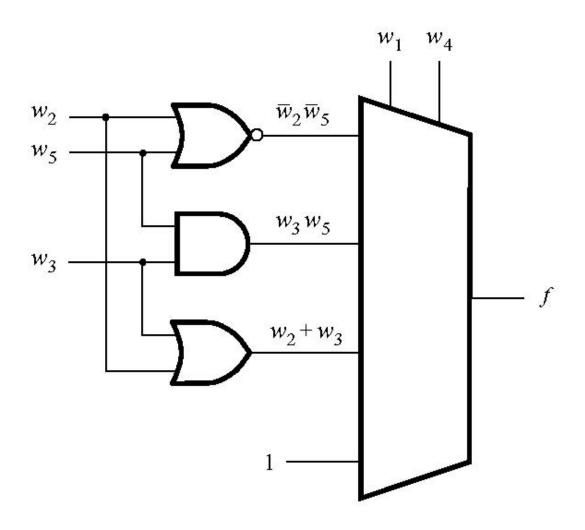
$$\overline{w_{1}}\overline{w_{4}}(\overline{w_{5}}\overline{w_{2}}) + (\overline{w_{1}}+w_{1})w_{4}(w_{3}w_{5}) + w_{1}(\overline{w_{4}}+w_{4})(w_{2}+w_{3}) + w_{1}w_{4}(1)$$

$$\overline{w_{1}}\overline{w_{4}}(\overline{w_{5}}\overline{w_{2}}) + \overline{w_{1}}w_{4}(w_{3}w_{5}) + w_{1}\overline{w_{4}}(w_{2}+w_{3}) + w_{1}w_{4}(w_{3}w_{5} + (w_{2}+w_{3}) + 1)$$

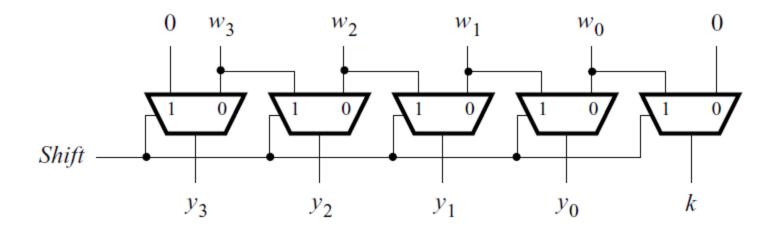
$$\overline{w_{1}}\overline{w_{4}}(\overline{w_{5}}\overline{w_{2}}) + \overline{w_{1}}w_{4}(w_{3}w_{5}) + w_{1}\overline{w_{4}}(w_{2}+w_{3}) + w_{1}w_{4}(1)$$

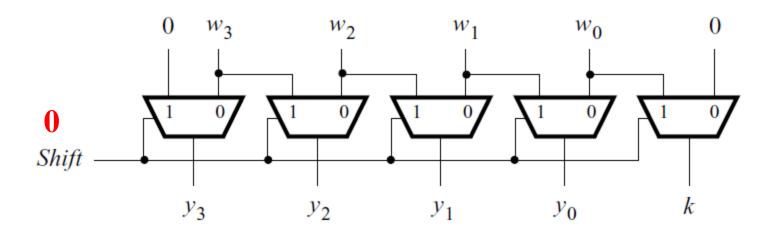
Note that the split is by w_1 and w_4 , not w_1 and w_2

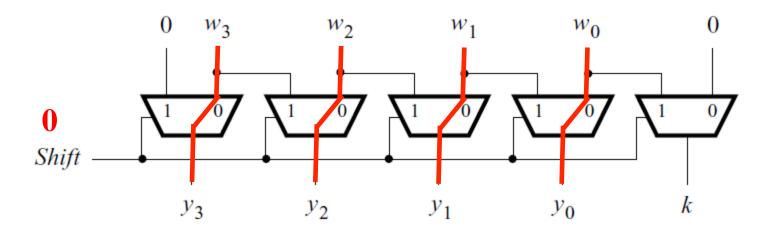
Solution Circuit

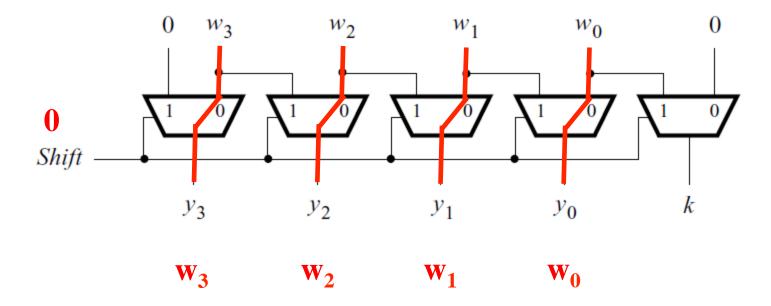


Some Final Things from Chapter 4

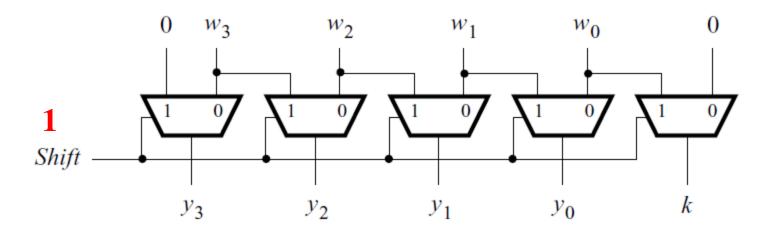


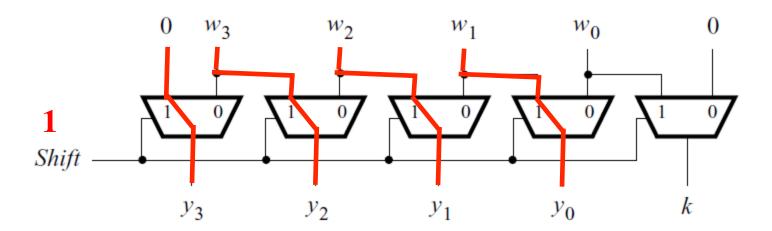






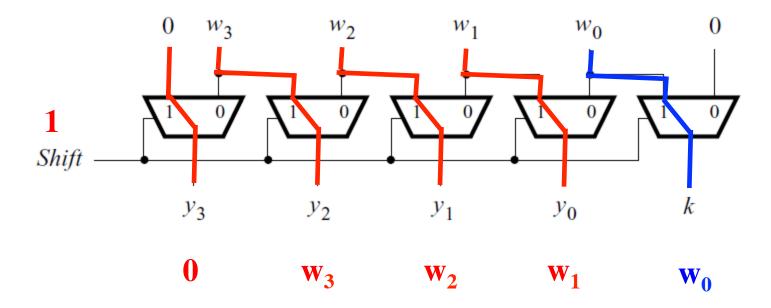
No shift in this case.







Shift to the right by 1 bit

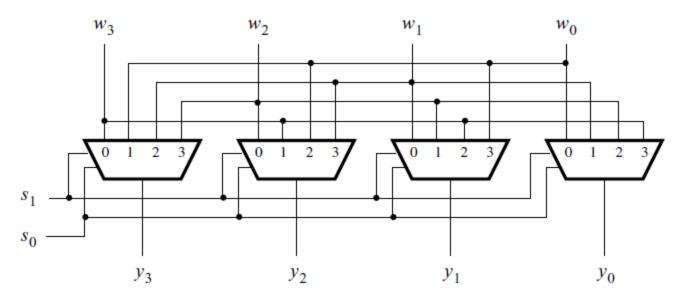


Shift to the right by 1 bit

A barrel shifter circuit

y_3	y_2	y_1	y_0
w_3	w_2	w_1	w_0
w_0	w_3	w_2	w_1
w_1	w_0	w_3	w_2
w_2	w_1	w_0	w_3
	w_3 w_0 w_1	$w_3 w_2 \\ w_0 w_3 \\ w_1 w_0$	$w_3 \ w_2 \ w_1 \ w_0 \ w_3 \ w_2$

(a) Truth table



(b) Circuit

[Figure 4.51 from the textbook]

Questions?

THE END