Minimization and Karnaugh Maps Cpr E 281 HW04 Assigned Date: Fourth Week ENGINEERING Due Date: Monday, Sep. 19, 2016 **IOWA STATE UNIVERSITY**

P1. (20 points) Use a K-map to find the minimal sum-of-products (SOP) expression for the following four problems. Show the terms that are grouped in each K-map.

a) (5 points)

BC					
Α	00	01	11	10	
0	0	0	0	1	
1	1	0	0	1	
CD AB 00 01 11 10					

b) (5 points)

В	\backslash	00	01	11	10
	00	1	0	0	1
	01	0	1	1	0
	11	0	0	0	0
	10	1	0	0	1

- c) (5 points) $F(A, B, C) = \sum m(1, 2, 3, 5, 7)$ d) (5 points) $F(A, B, C, D) = \sum m(1, 3, 4, 5, 6, 7, 9, 11, 13, 15)$

P2. (15 points) Use a K-map to find the minimal product-of-sums (POS) expression for the following three problems. Show the terms that are grouped in each K-map.

a) (5 points)

BC					
А 🔪	00	01	11	10	
0	0	0	0	1	
1	1	0	0	1	

b) (5 points)

	CD)			
AB		00	01	11	10
	00	1	0	0	1
	01	0	1	1	0
	11	0	1	1	0
	10	1	0	0	1

c) (5 points) $F(A, B, C, D) = \prod M(5, 7, 11, 13, 15)$

P3. (15 points) A four-variable function F(w, x, y, z) is called a *majority* function if

- F = 1 when any three or all four of its input variables are equal to 1.
 - a) (5 points) Draw the truth table for the majority function.

ENGINEERING

- b) (5 points) Use a K-map to derive the minimal SOP expressions for the majority function.
- c) (5 points) Use a K-map to derive the minimal POS expressions for the majority function.

P4. (10 points) Use a K-map to derive the minimal SOP expressions for the following Boolean function:

F(A, B, C, D) = ACD' + C'D + AB' + ABCD

P5. (20 points) Design a circuit that accepts a 4-bit number $X = x_3 x_2 x_1 x_0$ as input and generates a 1-bit output P that is equal to 1 if the input number is a prime. (0 and 1 are not prime; 2, 3, 5, etc., are prime.)

- a) (10 points) Write down the truth table for the output P.
- b) (10 points) Derive the simplest SOP expressions for the output P.

P6. (20 points) Design a circuit that accepts a 3-bit number $X = x_2 x_1 x_0$ as input and generates a 6-bit number $Y = y_5 y_4 y_3 y_2 y_1 y_0$ as output, which is equal to the square of the input number (i.e., $Y=X^2$).

- a) (10 points) Write down the truth table for the six output lines $y_5y_4y_3y_2y_1y_0$ that jointly represent the number Y in binary.
- b) (10 points) Derive the simplest SOP expressions for each bit of the output. That is, derive six expressions: one for y_5 , another for y_4 , and so on.