Cpr E 281 HW05
 ELECTRICAL AND COMPUTER
 ENGINEERING
 IOWA STATE UNIVERSITY

 Number Representation and

 Number Representation and Arithmetic Circuits Arithmetic Circuits Assigned Date: Fifth Week Assigned Date: Fifth Week Due Date: Monday, Oct. 3, 2016

 Due Date: Monday, Oct. 3, 2016}P1. (10 points) An expedition to Mars found the ruins of a civilization. The explorers were able to translate the mathematical equations:

$$
5 x^{2}-50 x+125=0
$$

with the solutions: $x=5$ and $x=8$. The $x=5$ solution seemed okay, but $x=8$ was puzzling. The problem should be because Martians were using a non-decimal number system. Therefore, " 50 " is not fifty, but " 50 " in base $b(50 b=5 \times b+0 \times 1=5 b)$. The explorers reflected on the way in which Earth's number system developed. How many fingers would you say the Martians had? (Hint: What should be the value of the base b such that both 5 and 8 are solutions of the equation?)

P2. (15 points) Complete the following table by converting the integers in decimal to 5bit signed numbers in binary. (1 point for each cell.)

	Decimal	Sign-and-Magnitude	1's Complement	2's Complement
Example	$\mathbf{- 5}$	$\mathbf{1 0 1 0 1}$	$\mathbf{1 1 0 1 0}$	$\mathbf{1 1 0 1 1}$
(a)	$\mathbf{- 1 5}$			
(b)	$\mathbf{- 1 0}$			
(c)	$\mathbf{- 1}$			
(d)	$\mathbf{0}$			
(e)	$\mathbf{7}$			

P3. (18 points) Perform the following conversions: (3 points each)
a) $(10011)_{2}$ in 5 -bit sign-and-magnitude to 5 -bit 1 's complement
b) $(10011)_{2}$ in 5 -bit sign-and-magnitude to 5 -bit 2 's complement
c) $(11000)_{2}$ in 5 -bit 1 's complement to 5 -bit sign-and-magnitude
d) $(11000)_{2}$ in 5 -bit 1's complement to 5 -bit 2 's complement
e) $(101110)_{2}$ in 6 -bit 2 's complement to 6 -bit sign-and-magnitude
f) (101110) $)_{2}$ in 6 -bit 2 's complement to 6 -bit 1's complement

P4. (12 points) Negate the following 6-bit 2's complement binary numbers: (3 points each)
a) $(001010)_{2}$
b) $(110011)_{2}$
c) $(100100)_{2}$
d) $(010001)_{2}$

P5. (10 points) Consider 4-bit 2's complement representation for signed numbers.
a) (2 points) What is the largest integer in decimal that can be represented?
b) (2 points) What is the smallest integer in decimal that can be represented?
c) (6 points) For n-bit 2 's complement representation, what are the largest and smallest integers in decimal that can be represented?

Number Representation and Arithmetic Circuits Assigned Date: Fifth Week Due Date: Monday, Oct. 3, 2016

P6. (10 points) Perform the following additions of 5-bit unsigned numbers in binary and identify if overflow occurs. Check your answers by converting the numbers to decimal.
a) $(5$ points $) 01111+01010$
b) $(5$ points $) 11000+01101$

P7. (15 points) Perform the following operations of 5-bit 2's complement numbers in binary and identify if overflow occurs. Check your answers by converting the numbers to decimal.
a) $(5$ points $) 01111+01010$
b) $(5$ points $) 11000+01101$

c) (5 points) 01010-11101

P8. (10 points) Read Section 3.2 from the textbook. A full-adder (FA) can be constructed with two half-adders (HAs). From Figure 3.4 on page 129 one can infer that the carry-out function for a FA is given by:

$$
c_{i+1}=x_{i} y_{i}+c_{i}\left(x_{i} \oplus y_{i}\right)
$$

On the other hand, the textbook states on page 126 that the carry-out function for a FA is:

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

Prove that these two functions are the same using Boolean algebra.

