Cpr E 281 HW06
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Arithmetic Circuits and CombinationalCircuit Building Blocks Assigned Date: Seventh Week Due Date: Monday, Oct. 10, 2016

P1. (20 points)

Consider the addition of the two \boldsymbol{n}-bit 2 's complement numbers:

$$
\begin{aligned}
& X=x_{n-1} x_{n-2} \cdots x_{1} x_{0} \\
& Y=y_{n-1} y_{n-2} \cdots y_{1} y_{0}
\end{aligned}
$$

Suppose the sum is $S=s_{n-1} s_{n-2} \ldots s_{1} s_{0}$ and the carry is $C_{n}=c_{n} c_{n-1} c_{n-2} \ldots c_{1} c_{0}$.
a) (5 points) If X is positive, Y is negative, and $c_{n-1}=0$, what should be the values of c_{n} and s_{n-1} ? Will overflow occur?
b) (5 points) If X is negative, Y is negative, and $c_{n-1}=0$, what should be the values of c_{n} and s_{n-1} ? Will overflow occur?
c) (5 points) Following the idea in part (a) and (b), please construct a truth table for the values of c_{n} and s_{n-1} for all combinations of the sign of X, the sign of Y, and the value of c_{n-1}. For each combination, please also state if overflow occurs or not.
d) (5 points) Based on the truth table in part (c), prove that Overflow $=c_{n} \oplus c_{n-1}$.

P2. (10 points)

In class we learned that a carry-lookahead adder is faster than a ripple-carry adder. Could you explain why sometimes a designer might still choose a ripple-carry adder instead of a carrylookahead adder?

P3. (10 points)

Perform the following conversions.
a) (5 points) Decimal number 5.375 to fixed-point number.
b) (5 points) Fixed-point number 1101.0111 to decimal number.

P4. (10 points)

Convert the decimal number 15.625 to IEEE 754 single-precision floating number format.

P5. (10 points)

Convert the following IEEE 754 single-precision floating number to decimal number.
10111111001100000000000000000000

Arithmetic Circuits and CombinationalCircuit Building Blocks Assigned Date: Seventh Week Due Date: Monday, Oct. 10, 2016

P6. (20 points)

The following two examples illustrate how to implement NOT and AND functions with 2-to-1 multiplexers.

Use only 2-to-1 multiplexer to implement each of the following functions:
a) (5 points) $F(A, B)=A+B \quad$ (OR)
b) (5 points) $F(A, B)=A \oplus B \quad$ (XOR)
c) $(5$ points) $F(A, B)=\overline{A \cdot B} \quad$ (NAND)
d) (5 points) $F(A, B)=\overline{A+B} \quad$ (NOR)

Assume the inverse of each input variable is available. (i.e., you can directly use the inverse of each input variable A or B in your answer.)

P7. (10 points)

Use only 2-to-1 multiplexers to implement the circuit for the following function:

$$
F(A, B, C)=\prod M(1,2,4,5)
$$

Assume the inverse of each input variable is available. (i.e., you can directly use the inverse of each input variable A, B, or C, in your answer.)

P8. (10 points)

Repeat P7, but this time using only one 4-to-1 multiplexer.

