In your answers, please clearly label the inputs and outputs of each multiplexer, decoder, encoder, and any other design block.

P1. (10 points)

Consider the following logic function:

ENGINEERING

F(A, B, C) = A'BC' + A'BC + AB'C + ABC

- a) (5 points) Show the Shannon's expansion of the function F using variable A.
- b) (5 points) Implement the circuit for function F using one 2-to-1 multiplexer and a minimal number of other logic gates.

P2. (20 points)

Consider the following truth table for the function f(a, b, c, d).

<i>a</i>				
a	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

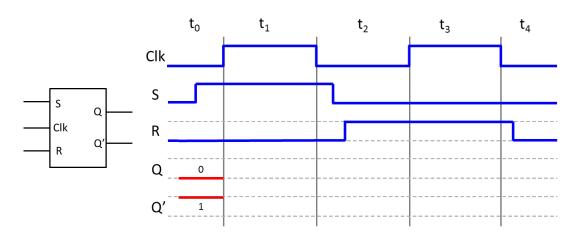
- a) (10 points) Implement f using one 4-to-16 decoder and a minimal number of gates.
- b) (10 points) Implement f using one 8-to-1 multiplexer and a minimal number of gates.

P3. (10 points)

Show how to construct a 4-to-16 decoder using five 2-to-4 decoders. Assume each 2-to-4 decoder has an ENABLE input (which enables each decoder).

P4. (10 points)

Implement the circuit for an 8-to-1 multiplexer using a 3-to-8 decoder and other necessary gates. The circuit should have control inputs $s_2s_1s_0$, data inputs $w_7w_6w_5w_4w_3w_2w_1w_0$, and an output f.


P5. (20 points)

Design a 4-to-2 priority encoder with the same inputs and outputs as in Figure 4.20 in the textbook, but with the following priority order: $w_3 < w_2 < w_1 < w_0$

- a) (10 points) Show the truth table of this encoder.
- b) (10 points) Derive the minimal POS expression for y_1 , y_0 , and z, respectively.

P6. (10 points)

Complete the following timing diagram for a gated SR-latch. Assume there's no gate delay.

P7. (20 points)

A full-adder (FA) has the following truth table:

x	У	C _{in}	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- a) (10 points) Implement the circuit for the output *s* by using one 4-to-1 multiplexer and a minimal number of gates.
- b) (10 points) Implement the circuit for the output c_{out} by using one 4-to-1 multiplexer. Please use x and y as control inputs s_1 and s_0 for the multiplexer.