Cpre 281 HW07
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY

In your answers, please clearly label the inputs and outputs of each multiplexer, decoder, encoder, and any other design block.

P1. (10 points)

Consider the following logic function:

$$
F(A, B, C)=A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C
$$

a) (5 points) Show the Shannon's expansion of the function F using variable A.
b) (5 points) Implement the circuit for function F using one 2-to- 1 multiplexer and a minimal number of other logic gates.

P2. (20 points)

Consider the following truth table for the function $f(a, b, c, d)$.

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

a) (10 points) Implement f using one 4 -to- 16 decoder and a minimal number of gates.
b) (10 points) Implement f using one 8 -to- 1 multiplexer and a minimal number of gates.

P3. (10 points)

Show how to construct a 4-to-16 decoder using five 2-to-4 decoders. Assume each 2-to-4 decoder has an ENABLE input (which enables each decoder).

P4. (10 points)

Implement the circuit for an 8-to-1 multiplexer using a 3-to-8 decoder and other necessary gates. The circuit should have control inputs $s_{2} s_{1} s_{0}$, data inputs $w_{7} w_{6} w_{5} w_{4} w_{3} w_{2} w_{1} w_{0}$, and an output f.

Combinational-Circuit Building Blocks
Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

P5. (20 points)

Design a 4-to-2 priority encoder with the same inputs and outputs as in Figure 4.20 in the textbook, but with the following priority order: $w_{3}<w_{2}<w_{1}<w_{0}$
a) (10 points) Show the truth table of this encoder.
b) (10 points) Derive the minimal POS expression for y_{1}, y_{0}, and z, respectively.

P6. (10 points)

Complete the following timing diagram for a gated SR-latch. Assume there's no gate delay.

P7. (20 points)

A full-adder (FA) has the following truth table:

x	y	$c_{\text {in }}$	s	$c_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

a) (10 points) Implement the circuit for the output s by using one 4-to-1 multiplexer and a minimal number of gates.
b) (10 points) Implement the circuit for the output $c_{\text {out }}$ by using one 4 -to- 1 multiplexer. Please use x and y as control inputs s_{1} and s_{0} for the multiplexer.

