Cpre 281 HW08
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY

Flip-Flops, Registers, and Counters Assigned Date: Ninth Week

 Due Date: Wednesday, Oct. 24, 2016P1. (10 points)
Consider a basic SR latch with inputs S, R, and outputs Q_{a}, Q_{b}. (Figure 5.4 in the textbook)
a) (5 points) What would happen to Q_{a} and Q_{b} if $S=R=1$?
b) (5 points) What would happen to Q_{a} and Q_{b} if we transit from $S=R=1$ to $S=R=0$?

P2. (15 points)

Complete the following timing diagram for Q_{a}, Q_{b}, and Q_{c}, which are the outputs of a gated D latch, a positive edge-triggered D flip-flop, and a negative edge-triggered D flip-flop. Assume $Q=0$ initially and no gate delays. (5 points each)

P3. (10 points)

Complete the following timing diagram for a T flip-flop. Assume no gate delays.

Flip-Flops, Registers, and Counters
 Assigned Date: Ninth Week
 Due Date: Wednesday, Oct. 24, 2016

P4. (10 points)
The following truth table can be used to construct a T flip-flop using a D flip-flop.

T	Output		D
	$\mathrm{Q}(t)$	$\mathrm{Q}(t+1)$	
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

a) (5 points) Write down the simplified SOP expression of D using T and $\mathrm{Q}(t)$ for inputs.
b) (5 points) Draw the circuit for a T flip-flop using a D flip-flop and other necessary gates. Make sure you connect the flip-flop to a clock signal.

P5. (20 points)

Construct a JK flip-flop using a T flip-flop.
a) (10 points) Complete the following truth table.

J	K	Output		T
		$\mathrm{Q}(t)$	$\mathrm{Q}(t+1)$	
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b) (5 points) Write down the simplified SOP expression of T using J, K, and $\mathrm{Q}(t)$ for inputs.
c) (5 points) Draw the circuit for a JK flip-flop using a T flip-flop and other necessary gates.

Make sure that you connect the flip-flop to a clock signal.

P6. (20 points)

Design a 4-bit shift register that has a control input S, a data input X, and output $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$. When $S=0$, the register will shift left, i.e., the output becomes $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0} \mathrm{X}$. When $\mathrm{S}=1$, the register will shift right and the output becomes $\mathrm{XQ}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1}$. Draw a circuit for such a shift register using 4 D flip-flops and 4 2-to-1 multiplexers.

Flip-Flops, Registers, and Counters
 Assigned Date: Ninth Week
 Due Date: Wednesday, Oct. 24, 2016

P7. (15points)

a) (10 points) Complete the truth table for the circuit above.

Input	$\mathrm{Q}(t)$	J	K	$\mathrm{Q}(t+1)$
0	0			
0	1			
1	0			
1	1			

b) (5 points) Based on the truth table, could you identify which flip-flop it is?

