Cpr E 281 HW 09
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits
 Assigned Date: Eleventh Week
 Due Date: Monday, Nov. 7, 2016

P1. (15 points)

To construct a register file containing eight 16-bit registers, two input ports and three output ports, we use \boldsymbol{w} number of 16 -bit registers with parallel load input, \boldsymbol{x} number of \boldsymbol{y}-to-1 \boldsymbol{z}-bit multiplexers, and \boldsymbol{p} number of \boldsymbol{q}-to- \boldsymbol{r} decoders with enable. Specify the values of $\boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{p}, \boldsymbol{q}$, and \boldsymbol{r}. (2 points for each variable)

P2. (10 points)

What is the counting sequence of the following counter?
Assume the counter starts from $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=000$.

P3. (20 points)

Answer the following questions:
a) (5 points) Draw a circuit for a 4-bit asynchronous up-counter using T flip-flops.
b) (5 points) Draw a circuit for a 4-bit synchronous up-counter using T flip-flops.
c) (5 points) Let $\mathrm{Q}_{\mathrm{n}} \ldots \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$ be the bits that represent the count value of an asynchronous counter. What could happen if n is increased?
d) (5 points) Could you think of one possible reason that a designer may choose to implement an asynchronous counter over a synchronous counter?

P4. (10 points)

Figure 5.25 in textbook shows the design of a modulo-6 counter with reset synchronization.
Modify the circuit and make it a modulo- 5 counter instead?

Synchronous Sequential Circuits
 Assigned Date: Eleventh Week
 Due Date: Monday, Nov. 7, 2016

P5. (25 points) Consider a FSM with the following state diagram:

a) (5 points) Complete the following state table based on the state diagram:

| Present |
| :---: | :---: | :---: | :---: |
| State |\quad| Next State | Output |
| :---: | :---: |
| | |
| A | A |
| B | 0 |
| B | |
| | |
| C | |
| | |
| D | |
| | |

b) (5 points) Encode each state and outputs in (a) with binary numbers to build the following state-assigned table:

Present	Next State		Output
State	$w=0$		
$y_{1} y_{0}$	$Y_{1} Y_{0}$	$Y_{1} Y_{0}$	$z_{1} z_{0}$

c) (5 points) Derive the minimal logic expressions for Y_{1}, Y_{0}, z_{1}, and z_{0}.
d) (5 points) Draw the complete circuit diagram using D flip-flops and any additional logic gates that are required.
e) (5 points) What does this FSM do? What happens when $w=0$ and $w=1$?

P6. (20 points)

Design a 2-bit counter controlled by an input w. When $w=0$, it acts as a down-counter. When $w=1$, it acts as an up-counter. The output shows the current value of counter.
a) (5 points) Draw the state diagram for this counter.
b) (5 points) Derive the state-assigned table for this counter. Each state and output should be encoded with binary numbers.
c) (5 points) Derive the minimal logic expressions for Y_{1}, Y_{0}, z_{1}, and z_{0}.
d) (5 points) Draw the complete circuit diagram using D flip-flops and any additional logic gates that are required.

