

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Binary Numbers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

This is the official class web page:
http://www.ece.iastate.edu/~alexs/classes/2016_Fall_281/

If you missed the first lecture, the syllabus and other class materials are posted there.

Administrative Stuff

- HW1 is out
- It is due on Monday Aug 29 @ 4pm.
- Submit it on paper before the start of the lecture

Administrative Stuff

The labs and recitations start next week:

- Section N: Monday 9:00 AM - 11:50 AM (Coover Hall, room 1318)
- Section P: Monday 12:10 PM - 3:00 PM (Coover Hall, room 1318)
- Section R: Monday 5:10 PM - 8:00 PM (Coover Hall, room 1318)
- Section U: Tuesday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
- Section M: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2050)
- Section J: Wednesday 8:00 AM - 10:50 AM (Coover Hall, room 2050)
- Section T: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 1318)
- Section Q: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
- Section V: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
- Section L: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 2050)
- Section K: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 2050)
- Section G: Friday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
- The lab schedule is also posted on the class web page

Labs Next Week

Figure 1.5 in the textbook: An FPGA board.

Labs Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- You must print the answer sheet and do the prelab before you go to the lab.
- The TAs will check your answers at the beginning of the lab.

Did you get the textbook?

The Decimal System

What number system is this one?

[http://freedomhygiene.com/wp-content/themes/branfordmagazine/images/backgrounds/Hands_141756.jpg]

The Binary System

[http://divaprojections.blogspot.com/2011/11/alien.html]

Number Systems

$$
N=d_{n} B^{n}+d_{n-1} B^{n-1}+\cdots+d_{1} B^{1}+d_{0} B_{0}^{0}
$$

Number Systems

n-th digit (most significant)

0 -th digit
(least significant)

Number Systems

The Decimal System

$$
524_{10}=5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}
$$

The Decimal System

$$
\begin{aligned}
524_{10} & =5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0} \\
& =5 \times 100+2 \times 10+4 \times 1 \\
& =500+20+4 \\
& =524_{10}
\end{aligned}
$$

Another Way to Look at This

Another Way to Look at This

Another Way to Look at This

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0 .

Base 7

$$
524_{7}=5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0}
$$

Base 7

Base 7

most significant digit
least significant digit

Base 7

$$
\begin{aligned}
524_{7} & =5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0} \\
& =5 \times 49+2 \times 7+4 \times 1 \\
& =245+14+4 \\
& =263_{10}
\end{aligned}
$$

Another Way to Look at This

Binary Numbers (Base 2)

$$
1001_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
$$

Binary Numbers (Base 2)

Binary Numbers (Base 2)

$$
\begin{aligned}
1001_{2} & =1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& =1 \times 8+0 \times 4+0 \times 2+1 \times 1= \\
& =8+0+1 \\
& =9_{10}+0+0
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& 11101_{2}=1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& \begin{array}{lllll}
=1 \times 16+1 \times 8 & +1 \times 4 & +0 \times 2 & +1 \times 1 & = \\
=16 & +8 & +4 & +0 & +1
\end{array}
\end{aligned}
$$

Powers of 2

$$
\begin{array}{llr}
2^{10} & =1024 \\
2^{9} & = & 512 \\
2^{8} & =256 \\
2^{7} & = & 128 \\
2^{6} & = & 64 \\
2^{5} & = & 32 \\
2^{4} & = & 16 \\
2^{3} & = & 8 \\
2^{2} & = & 4 \\
2^{1} & = & 2 \\
2^{0} & = & 1
\end{array}
$$

What is the value of this binary number?

- 00101100
- 0
$0 \quad 1$
0
1
1
0
0
- $0^{*} 2^{7}+0^{*} 2^{6}+1^{*} 2^{5}+0^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+0^{*} 2^{0}$
- 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1* $4+0 * 2+0 * 1$
- $0 * 128+0 * 64+1 * 32+0 * 16+1 * 8+1 * 4+0 * 2+0 * 1$
- 32+ $8+4=44$ (in decimal)

Another Way to Look at This

Some Terminology

- A binary digit is called a bit
- A group of eight bits is called a byte
- One bit can represent only two possible states, which are denoted with 1 and 0

Relationship Between a Byte and a Bit

Relationship Between a Byte and a Bit

Relationship Between a Byte and a Bit

Bit Permutations

1 bit	$\underline{2}$ bits	3 bits	4 bits	
0	00	000	0000	1000
1	01	001	0001	1001
	10	010	0010	1010
	11	011	0011	1011
		100	0100	1100
		101	0101	1101
		110	0110	1110
		111	0111	1111

Each additional bit doubles the number of possible permutations

Bit Permutations

- Each permutation can represent a particular item
- There are 2^{N} permutations of N bits
- Therefore, \mathbf{N} bits are needed to represent $2^{\mathbf{N}}$ unique items
How many
items can be
represented by $\begin{cases}1 \text { bit? } & 2^{1}=2 \text { items } \\ 2 \text { bits? } & 2^{2}=4 \text { items } \\ 3 \text { bits? } & 2^{3}=8 \text { items } \\ 4 \text { bits? } & 2^{4}=16 \text { items } \\ 5 \text { bits? } & 2^{5}=32 \text { items }\end{cases}$

What is the maximum number that can be stored in one byte (8 bits)?

What is the maximum number that can be stored in one byte (8 bits)?

- 11111111
- 1

- $1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}$
- $1^{*} 128+1^{*} 64+1^{*} 32+1^{*} 16+1^{*} 8+1 * 4+1^{*} 2+1^{*} 1$
- $128+64+32+16+8+4+2+1=255$ (in decimal)
- Another way is: $1^{*} \mathbf{2}^{8}-1=256-1=255$

What would happen if we try to add 1 to the largest number that can be stored in one byte (8 bits)?

$$
\begin{array}{rrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
+ & & & & & & & & \\
& & & & & & & & 1 \\
- & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & - & & & & & & \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Analogy with car odometers

Analogy with car odometers

Decimal to Binary Conversion (Using Guessing)

$$
17=16+1 \rightarrow 10001_{2}
$$

$$
\begin{aligned}
& 2^{7}=128 \\
& 2^{6}=64 \\
& 2^{5}=32 \\
& 2^{4}=16 \checkmark \\
& 2^{3}=8 \\
& 2^{2}=4 \\
& 2^{1}=2 \\
& 2^{0}=1
\end{aligned}
$$

Decimal to Binary Conversion (Using Guessing)

$$
212=128+64+16+4 \rightarrow 11010100_{2}
$$

$$
\begin{aligned}
2^{7} & =128 \checkmark \\
2^{6} & =64 \checkmark \\
2^{5} & =32 \\
2^{4} & =16 \\
2^{3} & =8 \\
2^{2} & =4 \\
2^{1} & =2 \\
2^{0} & =1
\end{aligned}
$$

Converting from Decimal to Binary

result remainder

$235 / 2$	$=$	117	1
$117 / 2$	$=$	58	1
$58 / 2$	$=$	29	0
$29 / 2$	$=$	14	1
$14 / 2$	$=$	7	0
$7 / 2$	$=$	3	1
$3 / 2$	$=$	1	1
$1 / 2$	$=$	0	1

Converting from Decimal to Binary

result remainder

$$
\begin{array}{rllll}
235 & / & 2 & 117 & 1 \\
117 & / & = & 58 & 1 \\
58 & / & = & 29 & 0 \\
29 & / & 2 & 14 & 1 \\
14 & / 2 & = & 7 & 0 \\
7 & 2= & 3 & 1 \\
3 & 2= & 1 & 1 \\
1 & / 2 & = & 0 & 1 \\
& & & \\
& & 235_{10} & =11101011_{2} &
\end{array}
$$

Convert (857) 10

	Remainder			
$857 \div 2$	$=$	428	1	LSB
$428 \div 2$	$=$	214	0	
$214 \div 2$	$=107$	0		
$107 \div 2$	$=53$	1		
$53 \div 2$	$=26$	1		
$26 \div 2$	$=13$	0		
$13 \div 2$	$=6$	1		
$6 \div 2$	$=3$	0		
$3 \div 2$	$=1$	1		
$1 \div 2$	$=0$	1	MSB	

Result is $(1101011001)_{2}$
[Figure 1.6 in the textbook]

Octal System (Base 8)

0	1	2	3	4	5	6	7
10	11	12	13	14	15	16	17
20	21	22	23	24	25	26	27
30	31	32	33	34	35	36	37
40	41	42	43	44	45	46	47
50	51	52	53	54	55	56	57
60	61	62	63	64	65	66	67
70	71	72	73	74	75	76	77

Binary to Octal Conversion

$$
\begin{aligned}
& 000 \rightarrow 0 \\
& 001 \rightarrow \\
& 010 \\
& 0
\end{aligned}
$$

Binary to Octal Conversion

$$
101110010111_{2}=?_{8}
$$

Binary to Octal Conversion

$$
101110010111_{2}=?_{8}
$$

101110010111

Binary to Octal Conversion

$$
101110010111_{2}=?_{8}
$$

$$
\begin{array}{llll}
5 & 6 & 2 & 7
\end{array}
$$

Binary to Octal Conversion

$$
101110010111_{2}=?_{8}
$$

$$
\begin{array}{llll}
5 & 6 & 2 & 7
\end{array}
$$

Thus, $101110010111_{2}=5627_{8}$

Hexadecimal System (Base 16)

$$
\begin{gathered}
52_{16}=5 \times 16^{1}+2 \times 16^{0}= \\
5 \times 16+2 \times 1= \\
80+2=82_{10}
\end{gathered}
$$

The 16 Hexadecimal Digits

$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

The 16 Hexadecimal Digits

$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

Hexadecimal to Decimal Conversion

$$
\begin{aligned}
C 3_{16} & =C \times 16^{1}+3 \times 16^{0} \\
& =12 \times 16+3 \times 1 \\
& =192+3 \\
& =195_{10}
\end{aligned}
$$

Hexadecimal to Decimal Conversion

$$
B E E F_{16}=?_{10}
$$

Hexadecimal to Decimal Conversion

$$
\begin{array}{rlll}
B E E F_{16} & =B_{16} \times 16^{3}+E_{16 \times 16^{2}}+E_{16} \times 16^{1} & +F_{16} \times 16^{0} \\
& =11 \times 16^{3}+14 \times 16^{2} & +14 \times 16^{1} & +15 \times 16^{0} \\
& =11 \times 4096+14 \times 256 & +14 \times 16 & +15 \times 1 \\
& =45056+3584 & +224 & +15 \\
& =48879_{10} & &
\end{array}
$$

Binary to Hexadecimal Conversion

$$
\begin{aligned}
& 0000 \\
& 0001
\end{aligned} \rightarrow 0
$$

Binary to Hexadecimal Conversion

$$
\begin{aligned}
& 0000 \rightarrow 0 \rightarrow 0 \\
& 0001 \rightarrow 1 \rightarrow 1 \\
& 0010 \rightarrow 2 \rightarrow 2 \\
& 0011 \rightarrow 3 \rightarrow 3 \\
& 0100 \rightarrow 4 \rightarrow 4 \\
& 0101 \rightarrow 5 \rightarrow 5 \\
& 0110 \rightarrow 6 \rightarrow 6 \\
& 0111 \rightarrow 7 \rightarrow 7 \\
& 1000 \rightarrow 8 \rightarrow 8 \\
& 1001 \rightarrow 9 \rightarrow 9 \\
& 1010 \rightarrow 10 \rightarrow A \\
& 1011 \rightarrow 11 \rightarrow B \\
& 1100 \rightarrow 12 \rightarrow C \\
& 1101 \rightarrow 13 \rightarrow D \\
& 1110 \rightarrow 14 \rightarrow E \\
& 1111 \rightarrow 15 \rightarrow F
\end{aligned}
$$

Binary to Hexadecimal Conversion

$$
101110010111_{2}=?_{16}
$$

Binary to Hexadecimal Conversion

$$
101110010111_{2}=?_{16}
$$

101110010111

Binary to Hexadecimal Conversion

$$
101110010111_{2}=?_{16}
$$

101110010111

B 97

Binary to Hexadecimal Conversion

$$
101110010111_{2}=?_{16}
$$

101110010111

$$
\begin{array}{lll}
\text { B } & 9 & 7
\end{array}
$$

Thus, ${101110010111_{2}}=$ B97 $_{16}$

Decimal to Hexadecimal Conversion

$$
1396_{10}=574_{16}
$$

result remainder

$1396 / 16$	$=$	87	4
$87 / 16$	$=$	5	7
$5 / 16$	$=$	0	5

Decimal to Hexadecimal Conversion

$$
502_{10}=1 F 6_{16}
$$

result remainder

		result	remainder
502	16	$=$	6
31	16	$=$	1

Signed integers are more complicated

We will talk more about them when we start with Chapter 3 in a couple of weeks.

The story with floats is even more complicated IEEE 754-1985 Standard

[http://en.wikipedia.org/wiki/IEEE_754]

$v=(-1)^{\text {sign }} \times 2^{\text {exponent-exponent bias }} \times 1$.fraction
$s=+1$ (positive numbers and +0) when the sign bit is 0
$s=-1$ (negative numbers and -0) when the sign bit is 1
e = exponent -127 (in other words the exponent is stored with 127 added to it, also called "biased with 127 ")

In the example shown above, the sign is zero so s is +1 , the exponent is 124 so e is -3 , and the significand m is 1.01 (in binary, which is 1.25 in decimal). The represented number is therefore $+1.25 \times 2^{-3}$, which is $\mathbf{+ 0 . 1 5 6 2 5}$.
[http://en.wikipedia.org/wiki/IEEE_754]

On-line IEEE 754 Converter

- http://www.h-schmidt.net/FloatApplet/IEEE754.html
- More about floating point numbers in Chapter 3.

Storing Characters

- This requires some convention that maps binary numbers to characters.
- ASCII table
- Unicode

ASCII Table

Source: www.LookupTables.com

Extended ASCII Codes

128	Ç	144	É	161	i	177		193	\perp	209	${ }^{\top}$	225	β	241	\pm
129	ü	145	＊	162	ó	178		194	T	210	π	226	Γ	242	\geq
130	é	146	F	163	ú	179	｜	195	－	211	U	227	π	243	\leq
131	â	147	\％	164	Hin	180	\dagger	196	－	212	t	228	Σ	244	1
132	a	148	\％	165	Ñ	181	；	197	＋	213	F	229	0	245	1
133	à	149	ò	166	a	182	－	198	F	214	π	230	μ	246	\div
134	®	150	ט̂	167	－	183	π	199	Ir	215	H	231	τ	247	\approx
135	¢	151	ù	168	6	184	7	200	L	216	\＃	232	Φ	248	－
136	ê	152	－	169	－	185	\downarrow	201	「	217	」	233	（®）	249	
137	ë	153	0	170	ᄀ	186	\｜	202	背	218	Γ	234	Ω	250	
138	è	154	Ü	171	1／2	187	ง	203	T	219	\square	235	δ	251	\downarrow
139	i	156	E	172	1／4	188	$』$	204	15	220	\square	236	∞	252	
140	i	157	\＃	173	i	189	\Perp	205	＝	221	I	237	中	253	2
141	1	158		174	«	190	$=$	206	\＃	222	I	238	e	254	\square
142	A	159	f	175	＂	191	7	207	\pm	223	\square	239	\bigcirc	255	
143	\＆	160	a	176	－	192	L	208	\Perp	224	α	240	三		

Source：www．LookupTables．com

The Unicode Character Code

- http://www.unicode.org/charts/

Egyptian Hieroglyphs

http://www.unicode.org/charts/

Close up

\％	for	\％	晃		，${ }^{\text {a }}$	$\sqrt{7}$	1	灰					
\％	g	㫛	理	䦽	约	阿	1	¢	\bigcirc	\sim			
这	\％	\％	\％	－		\％	傩	\bigcirc	\bigcirc	\rightarrow	IIII		
迷	\％	月	18	文	8	4	通	－	4	－	iif	$\underline{0}$	
\％	${ }^{\text {g }}$	\％	＊＊	\％	\％	14	\％	＞	＂				

http：／／www．unicode．org／charts／

Questions?

THE END

