

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Logic Gates

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW1 is out
- It is due on Monday Aug 29 @ 4pm.
- Submit it on paper before the start of the lecture
- Please write clearly on the first page:
- your name
- student ID
- lab section letter

Labs Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- You must print the answer sheet and do the prelab before you go to the lab.
- The TAs will check your prelab answers at the beginning of the recitation. If you don't have it done you'll lose $\mathbf{2 0 \%}$ of the lab grade for that lab.

A Binary Switch

A Light Controlled by a Switch

(a) Simple connection to a battery
[Figure 2.2a from the textbook]

A Light Controlled by a Switch

(b) Using a ground connection as the return path

The Logical AND function (series connection of the switches)

[Figure 2.3a from the textbook]

The Logical OR function (parallel connection of the switches)

[Figure 2.3b from the textbook]

A series-parallel connection of the switches

[Figure 2.4 from the textbook]

An Inverting Circuit

[Figure 2.5 from the textbook]

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

x_{1}	x_{2}	$x_{1}+x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

Truth Tables for AND and OR

x_{1}	x_{2}	$x_{1} \cdot x_{2}$	$x_{1}+x_{2}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
AND			
OR			

[Figure 2.6b from the textbook]

Logic Gates with n Inputs

AND gate

OR gate

Truth Table for 3-input AND and OR

x_{1}	x_{2}	x_{3}	$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

[Figure 2.7 from the textbook]

Example of a Logic Circuit Implemented with Logic Gates

[Figure 2.8 from the textbook]

Example of a Logic Circuit Implemented with Logic Gates

[Figure 2.8 from the textbook]

Network Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Network Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Network Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Network Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Network Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

[Figure 2.10 from the textbook]

Timing Diagram

[Figure 2.10 from the textbook]

Truth Table for this Network

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$	A B 0 0 0 1 1 0 1	1
1	1	1	0	
1	0			
0	0			
0	1			

[Figure 2.10 from the textbook]

Functionally Equivalent Networks

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Functionally Equivalent Networks

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

(d) Network that implements $g=\bar{x}_{1}+x_{2}$
[Figure 2.10 from the textbook]

The XOR Logic Gate

(b) Truth table

The XOR Logic Gate

(a) Two switches that control a light
(c) Logic network

(b) Truth table

(d) XOR gate symbol
[Figure 2.11 from the textbook]

XOR Analysis

[Figure 2.11c from the textbook]

XOR Analysis ($\mathrm{x}=0, \mathrm{y}=0$)

XOR Analysis ($x=0, y=1$)

XOR Analysis ($x=1, y=0$)

XOR Analysis ($x=1, y=1$)

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & \begin{array}{r}
0 \\
+b \\
s_{1} s_{0}
\end{array} & \begin{array}{r}
0 \\
00
\end{array} & \frac{+1}{01} & \frac{+0}{01}
\end{array}
$$

[Figure 2.12 from the textbook]

Addition of Binary Numbers

$$
\begin{array}{r}
a \\
+b \\
\hline s_{1} s_{0}
\end{array} \quad \begin{array}{r}
0 \\
+0 \\
00
\end{array} \begin{array}{r}
0 \\
+1 \\
01
\end{array} \begin{array}{r}
1 \\
+0 \\
\hline 01
\end{array} \begin{array}{r}
1 \\
+1 \\
\hline 10
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

[Figure 2.12 from the textbook]

Addition of Binary Numbers

a	0	0	1	1
$\frac{+b}{s_{1} s_{0}}$	$\frac{+0}{00}$	$\frac{+1}{01}$	$\frac{+0}{01}$	$\frac{+1}{10}$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	0	0	1	1
$\frac{+b}{s_{1} s_{0}}$	$\frac{+0}{00}$	$\frac{+1}{01}$	$\frac{+0}{01}$	$\frac{+1}{10}$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b & +0 & +1 & +0 & +1 \\
\hline s_{1} s_{0} & & +0 & 01 & 01
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b & +0 & +1 & +0 & +1 \\
\hline s_{1} s_{0} & & +0 & 01 & 01
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b \\
\hline s_{1} s_{0} & & +0 & +1 & +0 \\
\hline 00 & +1 & +1 \\
\hline 010
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b \\
\hline s_{1} s_{0} & & +0 & +1 & +0 \\
\hline 00 & +1 & +1 \\
\hline 010
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b & +0 & +1 & +0 & +1 \\
\hline s_{1} s_{0} & & +0 & 01 & 01
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrrr}
a & 0 & 0 & 1 & 1 \\
+b \\
\hline s_{1} s_{0} & & +0 & +1 & +0 & +1 \\
\hline 00 & 01 & 01 & +10
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrrr}
a & 0 & 0 & 1 & 1 \\
+b \\
\hline s_{1} s_{0} & & +0 & +1 & +0 & +1 \\
\hline 00 & 01 & 01 & +10
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b & +0 & +1 & +0 & +1 \\
\hline s_{1} s_{0} & & +0 & 01 & 01
\end{array}
$$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

					$?$		
a	b	s_{1}	s_{0}				
0	0	0	0				
0	1	0	1				
1	0	0	1				
1	1	1	0				

Addition of Binary Numbers

	AND		
a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

		$?$	
a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

		XOR	
a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

The following examples came from this book

[Platt 2009]

[Platt 2009]

[Platt 2009]

Questions?

THE END

