

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Boolean Algebra

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW1 is due today

Administrative Stuff

- HW2 is out
- It is due on Wednesday Sep 7 @ 4pm.
- Submit it on paper before the start of the lecture

Boolean Algebra

- An algebraic structure consists of
- a set of elements $\{0,1\}$
- binary operators $\{+, \cdot\}$
- and a unary operator $\{$ ' $\}$ or $\{$ 一 $\}$
- Introduced by George Boole in 1854

George Boole 1815-1864

- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Axioms of Boolean Algebra

1a. $\quad 0 \cdot 0=0$
1b. $\quad 1+1=1$

2a. 1 - $1=1$
2b. $0+0=0$

3a. $0 \cdot 1=1 \cdot 0=0$
3b. $1+0=0+1=1$

4a. If $x=0$, then $\bar{x}=1$
4b. If $x=1$, then $\bar{x}=0$

Single-Variable Theorems

$$
\begin{array}{ll}
\text { 5a. } & x \cdot 0=0 \\
\text { 5b. } & x+1=1 \\
\text { 6a. } & x \cdot 1=x \\
\text { 6b. } & x+0=x \\
\text { 7a. } & x \cdot x=x \\
\text { 7b. } & x+x=x \\
\text { 8a. } & x \cdot \bar{x}=0 \\
\text { 8b. } & x+\bar{x}=1 \\
\text { 9. } & \overline{\bar{x}}=x
\end{array}
$$

Two- and Three-Variable Properties

$$
\begin{array}{ll}
\text { 10a. } & x \bullet y=y \bullet x \\
\text { 10b. } & x+y=y+x \\
\text { 11a. } & x \cdot(y \bullet z)=(x \bullet y) \bullet z \\
\text { 11b. } & x+(y+z)=(x+y)+z \\
\text { 12a. } & x \bullet(y+z)=x \bullet y+x^{\bullet} z \\
\text { 12b. } & x+y \cdot z=(x+y) \bullet(x+z) \\
\text { 13a. } & x+x \bullet y=x \\
\text { 13b. } & x \bullet(x+y)=x
\end{array}
$$

Distributive

Two- and Three-Variable Properties

$\begin{aligned} & 14 a \\ & 14 b \end{aligned}$	$\begin{aligned} & x \cdot y+x \cdot \bar{y}=x \\ & (x+y) \cdot(x+\bar{y})=x \end{aligned}$	Combining
15a	$\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$	DeMorgan's
15b	$\overline{\mathbf{x}+\mathrm{y}}=\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$	theorem
16a	$x+\bar{x} \cdot y=x+y$	
16b	$x^{\bullet}(\bar{x}+\mathrm{y})=\mathrm{x}^{\bullet} \mathrm{y}$	
17 a	$\begin{aligned} & x^{\bullet} y+y^{\bullet} z+\bar{x} \cdot z=x \bullet y+\bar{x} \cdot z \\ & (x+y)^{\bullet}\left(y^{\bullet}+z\right) \cdot(\bar{x}+z)=(x+y)^{\bullet}(\bar{x}+z) \end{aligned}$	Consensus

Now, let's prove all of these

The First Four are Axioms (i.e., they don't require a proof)

1a. $0 \cdot 0=0$
1b. $\quad 1+1=1$

2a. 1 - $1=1$
2b. $0+0=0$

3a. 0 - $1=1$ - $0=0$
3b. $1+0=0+1=1$

4a. If $x=0$, then $\bar{x}=1$
4b. If $x=1$, then $\bar{x}=0$

But here are some other ways to think about them

1 a.
$0 \cdot 0=0$

1b. $\quad 1+1=1$

1 .
$0 \cdot 0=0$

AND gate

1b. $\quad 1+1=1$

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

1 .
$0 \cdot 0=0$
1b.
$1+1=1$

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

2a. 1 - $1=1$ 2b. $0+0=0$

2a. 1 - $1=1$
2b. $0+0=0$

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

3a. $0 \cdot 1=1 \cdot 0=0$ 3b. $1+0=0+1=1$

3a. $0 \cdot 1=1 \cdot 0=0$

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

3b. $1+0=0+1=1$

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

3a. $0 \cdot 1=1 \cdot 0=0$

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

3b. $1+0=0+1=1$

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

3a. $0 \cdot 1=1 \cdot 0=0$

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

3b. $1+0=0+1=1$

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

4a. If $x=0$, then $\bar{x}=1$ 4b. If $x=1$, then $\bar{x}=0$

4a. If $x=0$, then $\bar{x}=1$

NOT gate

x	\bar{x}
0	1
1	0

4b. If $x=1$, then $\bar{x}=0$

NOT gate

x	\bar{x}
0	1
1	0

Single-Variable Theorems

$$
\begin{array}{ll}
\text { 5a. } & x \cdot 0=0 \\
\text { 5b. } & x+1=1 \\
\text { 6a. } & x \cdot 1=x \\
\text { 6b. } & x+0=x \\
\text { 7a. } & x \cdot x=x \\
\text { 7b. } & x+x=x \\
\text { 8a. } & x \cdot \bar{x}=0 \\
\text { 8b. } & x+\bar{x}=1 \\
\text { 9. } & \overline{\bar{x}}=x
\end{array}
$$

5a. $x \cdot 0=0$

5a. x - $0=0$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

5a. $x \cdot 0=0$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 0=0
$$

// axiom 1a

5a. $x \cdot 0=0$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 0=0
$$

// axiom 1a
ii) If $x=1$, then we have

$$
1 \cdot 0=0
$$

// axiom 3a

5b. $x+1=1$

5b. $x+1=1$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+1=1 \quad / / \text { axiom } 3 b
$$

5b. $x+1=1$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+1=1 \quad / / \text { axiom } 3 b
$$

ii) If $x=1$, then we have

$$
1+1=1
$$

// axiom 1b

6a. $x \cdot 1=x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 1=0
$$

// axiom 3a
ii) If $x=1$, then we have

$$
1 \cdot 1=1
$$

// axiom 2a

6a. $x \cdot 1=x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 1=0
$$

// axiom 3a
ii) If $x=1$, then we have

$$
1 \cdot 1=1
$$

// axiom 2a

6b. $x+0=x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+0=0
$$

// axiom 2b
ii) If $x=1$, then we have

$$
1+1=1
$$

// axiom 1b

6b. $x+0=x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+0=0
$$

// axiom 2b
ii) If $x=1$, then we have

$$
1+1=1
$$

// axiom 1b

7a. x - $=\mathbf{x}$

i) If $x=0$, then we have

$$
0 \cdot 0=0 \quad / / \text { axiom 1a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 1=1
$$

// axiom 2a

7a. $\quad \mathbf{x} \cdot \mathbf{x}=\mathbf{x}$

i) If $x=0$, then we have

$$
0 \cdot 0=0 \quad / / \text { axiom 1a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 1=1
$$

// axiom 2a

7b. $\quad x+x=x$

i) If $x=0$, then we have

$$
0+0=0 \quad / / \text { axiom } 2 b
$$

ii) If $x=1$, then we have

$$
1+1=1 \quad / / \text { axiom } 1 b
$$

7b. $\quad x+x=x$

i) If $x=0$, then we have

$$
0+0=0
$$

// axiom 2b
ii) If $x=1$, then we have

$$
1+1=1 \quad / / \text { axiom } 1 b
$$

8a. $x \cdot \bar{x}=0$

i) If $x=0$, then we have

$$
0 \cdot 1=0 \quad / / \text { axiom 3a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 0=0
$$

// axiom 3a

8a. $x \cdot \bar{x}=0$

i) If $x=0$, then we have

$$
0 \cdot 1=0 \quad / / \text { axiom 3a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 0=0
$$

I/ axiom 3a

8b. $\quad \mathrm{x}+\overline{\mathrm{x}}=1$

i) If $x=0$, then we have

$$
0+1=1 \quad / / \text { axiom } 3 b
$$

ii) If $x=1$, then we have

$$
1+0=1
$$

// axiom 3b

8b. $\quad x+\bar{x}=1$

i) If $x=0$, then we have

$$
0+1=1 \quad / / \text { axiom } 3 \mathrm{~b}
$$

ii) If $x=1$, then we have

$$
1+0=1 \quad / / \text { axiom } 3 b
$$

$$
\text { 9. } \overline{\overline{\mathbf{x}}}=\mathbf{x}
$$

i) If $x=0$, then we have

$$
\bar{x}=1
$$

I/ axiom 4a
let $y=\bar{x}=1$, then we have

$$
\bar{y}=0 \quad / / \text { axiom 4b }
$$

Therefore,

$$
\overline{\bar{x}}=x \quad(\text { when } x=0)
$$

$$
\text { 9. } \overline{\overline{\mathbf{x}}}=\mathbf{x}
$$

ii) If $x=1$, then we have

$$
\begin{aligned}
\bar{x} & =0 \\
\text { let } y=\bar{x} & =0, \text { then we have } \\
\bar{y} & =1
\end{aligned}
$$

Therefore,

$$
\overline{\bar{x}}=x \quad \text { (when } x=1)
$$

10a. $x \cdot y=y \bullet x$ 10b. $x+y=y+x$

10a.

10b. $\quad \mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$

AND gate

x	y	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x	y	f
0	0	0
0	1	1
1	0	1
1	1	1

The order of the inputs does not matter.

11a.
 $\mathbf{x} \bullet(\mathbf{y} \bullet \mathbf{z})=(\mathbf{x} \bullet \mathbf{y}) \bullet \mathbf{z}$

x	y	z	x	$y \cdot z$	$x \circ(y \circ z)$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Truth table for the left-hand side

11a.
 $\mathbf{x} \cdot(\mathbf{y} \bullet \mathbf{z})=(\mathbf{x} \bullet \mathbf{y}) \bullet \mathbf{z}$

| x | y | z | x | $y \cdot z$ | $x \circ(y \circ z)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 1 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | |
| 0 | 1 | 1 | 0 | 1 | |
| 1 | 0 | 0 | 1 | 0 | |
| 1 | 0 | 1 | 1 | 0 | |
| 1 | 1 | 0 | 1 | 0 | |
| 1 | 1 | 1 | 1 | 1 | |

Truth table for the left-hand side

11a.
 $\mathbf{x} \cdot(\mathbf{y} \bullet \mathbf{z})=(\mathbf{x} \bullet \mathbf{y}) \bullet \mathbf{z}$

x	y	z	x	$y \cdot z$	$x \circ(y \circ z)$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the left-hand side

11a.
 $\mathbf{x} \cdot(\mathbf{y} \bullet \mathbf{z})=(\mathbf{x} \bullet \mathbf{y}) \bullet \mathbf{z}$

x	y	z	$x \cdot y$	z	$(x \circ y) \cdot z$
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the right-hand side

11a.
 $\mathbf{x} \cdot(\mathbf{y} \bullet \mathbf{z})=(\mathbf{x} \bullet \mathbf{y}) \bullet \mathbf{z}$

$x \cdot(y \cdot z)$
0
0
0
0
0
0
0
1

$(x \circ y) \cdot z$
0
0
0
0
0
0
0
1

These two are identical, which concludes the proof.

11b. $x+(y+z)=(x+y)+z$

x	y	z	x	$y+z$	$x+(y+z)$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Truth table for the left-hand side

11b. $x+(y+z)=(x+y)+z$

| x | y | z | x | $y+z$ | $x+(y+z)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 1 | 0 | 1 | |
| 0 | 1 | 0 | 0 | 1 | |
| 0 | 1 | 1 | 0 | 1 | |
| 1 | 0 | 0 | 1 | 0 | |
| 1 | 0 | 1 | 1 | 1 | |
| 1 | 1 | 0 | 1 | 1 | |
| 1 | 1 | 1 | 1 | 1 | |

Truth table for the left-hand side

11b. $x+(y+z)=(x+y)+z$

x	y	z	x	$y+z$	$x+(y+z)$
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Truth table for the left-hand side

11b. $\quad x+(y+z)=(x+y)+z$

x	y	z	$x+y$	z	$(x+y)+z$
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Truth table for the right-hand side

11b. $x+(y+z)=(x+y)+z$

$x+(y+z)$	$(x+y)+z$
0	0
1	1
1	1
1	1
1	1
1	1
1	1
1	1

These two are identical, which concludes the proof.

The Venn Diagram Representation

Venn Diagram Basics

(a) Constant 1

(c) Variable x

(b) Constant 0

(d) \bar{x}

Venn Diagram Basics

(e) $x \cdot y$

(g) $x \cdot \bar{y}$

(f) $x+y$

(h) $x \cdot y+z$
[Figure 2.14 from the textbook]

Let's Prove the Distributive Properties

12a. $\quad x \cdot(y+z)=x \cdot y+x^{\bullet} z$
12b. $x+y \cdot z=(x+y)^{\bullet}(x+z)$

12b. $x+y \cdot z=(x+y) \cdot(x+z)$

(a) x

(b) $y \cdot z$

(c) $x+y \cdot z$

(d) $x+y$

(e) $x+z$

(f) $(x+y) \cdot(x+z)$
[Figure 2.17 from the textbook]

Try to prove these ones at home

13a. $x+x \cdot y=x$
13b. $x \cdot(x+y)=x$

14a. $x \cdot y+x \cdot \bar{y}=x$
14b. $\quad(x+y) \cdot(x+\bar{y})=x$

DeMorgan's Theorem

15a.
 $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$
 15b.
 $\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

Proof of DeMorgan's theorem

$\overline{\mathbf{x} \cdot \mathbf{Y}}$						
15a. $\overline{\mathbf{x}}+\overline{\mathbf{Y}}$						
x	y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
$\underbrace{}_{\text {LHS }}$	$\underbrace{}_{\text {RHS }}$					

[Figure 2.13 from the textbook]

Alternative Proof of DeMorgan's theorem

15a. $\overline{x \cdot y}=\bar{x}+\bar{y}$

(e) $\bar{x}+\bar{y}$

Let's prove DeMorgan's theorem
 15b. $\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}}$

Try to prove these ones at home

16a. $\quad x+\bar{x} \cdot y=x+y$
16b. $x^{\bullet}(\bar{x}+y)=x^{\bullet} y$

17a. $\quad x^{\bullet} y+y^{\bullet} z+\bar{x}^{\bullet} \mathbf{z}=x^{\bullet} y+\bar{x}^{\bullet} \mathbf{z}$
17b.
$(x+y) \cdot(y+z) \cdot(\bar{x}+z)=(x+y) \cdot(\bar{x}+z)$

Venn Diagram Example Proof of Property 17a

17a. $\quad x \bullet y+y \cdot z+\bar{x} \cdot z=x \bullet y+\bar{x} \bullet z$

Left-Hand Side

[Figure 2.16 from the textbook]

Left-Hand Side

Right-Hand Side

[Figure 2.16 from the textbook]

Left-Hand Side

$y \cdot z$

Right-Hand Side

[Figure 2.16 from the textbook]

Questions?

THE END

