

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Boolean Algebra

Administrative Stuff

HW1 is due today

Administrative Stuff

HW2 is out

• It is due on Wednesday Sep 7 @ 4pm.

Submit it on paper before the start of the lecture

Boolean Algebra

George Boole 1815-1864

- An algebraic structure consists of
 - a set of elements {0, 1}
 - binary operators {+, •}
 - and a unary operator { ' } or { -}
- Introduced by George Boole in 1854
- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Axioms of Boolean Algebra

1a.
$$0 \cdot 0 = 0$$

1b. $1 + 1 = 1$

2a. $1 \cdot 1 = 1$

2b. $0 + 0 = 0$

3a. $0 \cdot 1 = 1 \cdot 0 = 0$

3b. $1 + 0 = 0 + 1 = 1$

4a. If $x=0$, then $\overline{x} = 1$

4b. If $x=1$, then $\overline{x} = 0$

Single-Variable Theorems

5a.
$$x \cdot 0 = 0$$

5b. $x + 1 = 1$

6a.
$$x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

Two- and Three-Variable Properties

Two- and Three-Variable Properties

14a.
$$x \cdot y + x \cdot \overline{y} = x$$

Combining

14b.
$$(x + y) \cdot (x + \overline{y}) = x$$

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

DeMorgan's

16a.
$$x + \overline{x} \cdot y = x + y$$

16b.
$$x \cdot (\overline{x} + y) = x \cdot y$$

17a.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$
 Consensus

17b.
$$(x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

Now, let's prove all of these

The First Four are Axioms (i.e., they don't require a proof)

1a.
$$0 \cdot 0 = 0$$
1b. $1 + 1 = 1$

2a.
$$1 \cdot 1 = 1$$

$$2b. 0 + 0 = 0$$

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$3b. \quad 1 + 0 = 0 + 1 = 1$$

4a. If
$$x=0$$
, then $\overline{x} = 1$

4b. If
$$x=1$$
, then $\overline{x} = 0$

But here are some other ways to think about them

1a.
$$0 \cdot 0 = 0$$

1b.
$$1 + 1 = 1$$

$$\begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \end{array}$$

1a.
$$0 \cdot 0 = 0$$

1b.
$$1 + 1 = 1$$

1	\rightarrow	1
1		

\mathbf{x}_1	\mathbf{x}_2	f
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

1a.
$$0 \cdot 0 = 0$$

\mathbf{x}_1	\mathbf{x}_2	f
0	0	0
0	1	0
1	0	0
1	1	1

1b. 1 + 1 = 1

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$$

2a.
$$1 \cdot 1 = 1$$

$$2b. 0 + 0 = 0$$

AND gate

OR gate

2a.
$$1 \cdot 1 = 1$$

$$1 \cdot 1 = 1$$
 $2b. 0 + 0 = 0$

\mathbf{x}_1	\mathbf{x}_2	f
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{x}_1	\mathbf{x}_2	f
0	0	0
0	1	1
1	0	1
1	1	1

3a. $0 \cdot 1 = 1 \cdot 0 = 0$ 3b. 1 + 0 = 0 + 1 = 1

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

3b.
$$1 + 0 = 0 + 1 = 1$$

$$\begin{array}{c} 0 \\ 1 \end{array}$$

\mathbf{x}_1	\mathbf{X}_2	f
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

3b.
$$1 + 0 = 0 + 1 = 1$$

$$\begin{array}{c} 1 \\ 0 \end{array} \longrightarrow \begin{array}{c} 1 \end{array}$$

$$\begin{array}{c} 0 \\ 1 \end{array}$$

\mathbf{x}_1	\mathbf{X}_2	f
0	0	0
0	1	1
1	0	1
1	1	1

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

3b. 1 + 0 = 0 + 1 = 1

$$\begin{array}{c} 1 \\ 0 \end{array} \longrightarrow \begin{array}{c} 1 \end{array}$$

$$\begin{array}{c} 0 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \end{array}$$

\mathbf{x}_1	\mathbf{X}_2	f
0	0	0
0	1	1
1	0	1
1	1	1

4a. If x=0, then $\overline{x} = 1$ 4b. If x=1, then $\overline{x} = 0$

4a. If
$$x=0$$
, then $\overline{x} = 1$ 4b. If $x=1$, then $\overline{x} = 0$

NOT gate

\mathcal{X}	\overline{x}
0	1
1	0

NOT gate

$\boldsymbol{\mathcal{X}}$	$\overline{\mathcal{X}}$
0	1
1	0

Single-Variable Theorems

5a.
$$x \cdot 0 = 0$$

5b. $x + 1 = 1$

6a.
$$x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

5a. $x \cdot 0 = 0$

5a.
$$x \cdot 0 = 0$$

5a.
$$x \cdot 0 = 0$$

i) If x = 0, then we have

$$0 \cdot 0 = 0$$

// axiom 1a

5a.
$$x \cdot 0 = 0$$

i) If x = 0, then we have

$$0 \cdot 0 = 0$$

// axiom 1a

ii) If x = 1, then we have

$$1 \cdot 0 = 0$$

// axiom 3a

5b. x + 1 = 1

5b.
$$x + 1 = 1$$

i) If x = 0, then we have

$$0 + 1 = 1$$

// axiom 3b

5b.
$$x + 1 = 1$$

i) If x = 0, then we have

$$0 + 1 = 1$$

// axiom 3b

ii) If x = 1, then we have

$$1 + 1 = 1$$

// axiom 1b

6a.
$$x \cdot 1 = x$$

i) If x = 0, then we have

$$0 \cdot 1 = 0$$

// axiom 3a

ii) If x = 1, then we have

$$1 \cdot 1 = 1$$

// axiom 2a

$$6a. \quad x \cdot 1 = x$$

i) If x = 0, then we have

// axiom 3a

ii) If x = 1, then we have

// axiom 2a

6b.
$$x + 0 = x$$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If x = 0, then we have

$$0 + 0 = 0$$

// axiom 2b

ii) If x = 1, then we have

$$1 + 1 = 1$$

// axiom 1b

$$6b. \quad x + 0 = x$$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If x = 0, then we have

$$0 + 0 = 0$$

// axiom 2b

ii) If x = 1, then we have

// axiom 1b

7a.
$$x \cdot x = x$$

$$0 \cdot 0 = 0$$

// axiom 1a

ii) If x = 1, then we have

$$1 \cdot 1 = 1$$

// axiom 2a

7a.
$$x \cdot x = x$$

// axiom 1a

ii) If x = 1, then we have

// axiom 2a

7b.
$$x + x = x$$

$$0 + 0 = 0$$

// axiom 2b

ii) If x = 1, then we have

$$1 + 1 = 1$$

// axiom 1b

$$7b. x + x = x$$

$$0 + 0 = 0$$
 // axiom 2b

ii) If x = 1, then we have

8a.
$$x \cdot \overline{x} = 0$$

$$0 \cdot 1 = 0$$

// axiom 3a

ii) If x = 1, then we have

$$1 \cdot 0 = 0$$

// axiom 3a

8a.
$$x \cdot \overline{x} = 0$$

// axiom 3a

ii) If x = 1, then we have

// axiom 3a

$$8b. \quad x + \overline{x} = 1$$

$$0+1=1$$

// axiom 3b

ii) If x = 1, then we have

$$1+0=1$$

// axiom 3b

$$8b. \quad x + \overline{x} = 1$$

$$0 + 1 = 1$$

// axiom 3b

ii) If x = 1, then we have

$$1+0=1$$

// axiom 3b

$$9. \quad \mathbf{x} = \mathbf{x}$$

$$\overline{x} = 1$$

// axiom 4a

let $y = \overline{x} = 1$, then we have

$$\overline{y} = 0$$

// axiom 4b

Therefore,

$$=$$
 x (when x =0)

$$9. \quad \overset{=}{x} = x$$

$$\overline{x} = 0$$
 // axiom 4b

let $y = \overline{x} = 0$, then we have

$$\overline{y} = 1$$
 // axiom 4a

Therefore,

$$=$$
 x (when x =1)

10a. $x \cdot y = y \cdot x$ 10b. x + y = y + x

10a.
$$x \cdot y = y \cdot x$$

10b.
$$x + y = y + x$$

$$\begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{array}{c} y \\ x \end{array}$$

AND gate

X	У	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

X	У	f
0	0	0
0	1	1
1	0	1
1	1	1

The order of the inputs does not matter.

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	X	y • z	x•(y•z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	X	y • z	x•(y•z)
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	Х	y • z	x•(y•z)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	1

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	x • y	Z	(x•y)•z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the right-hand side

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

x•(y•z)
0
0
0
0
0
0
0
1

(x•y)•z
0
0
0
0
0
0
0
1

These two are identical, which concludes the proof.

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	X	y + z	x+(y+z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	X	y + z	x+(y+z)
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	1	

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	X	y + z	x+(y+z)
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	x + y	Z	(x+y)+z
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Truth table for the right-hand side

11b.
$$x + (y + z) = (x + y) + z$$

x+(y+z)
0
1
1
1
1
1
1
1

(x+y)+z
0
1
1
1
1
1
1
1

These two are identical, which concludes the proof.

The Venn Diagram Representation

x·*y*+*z*

Venn Diagram Basics

Venn Diagram Basics

Let's Prove the Distributive Properties

12a.
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

12b. $x + y \cdot z = (x + y) \cdot (x + z)$

12a. $x \cdot (y + z) = x \cdot y + x \cdot z$

(a) *x*

(b) y + z

(c)
$$x \cdot (y+z)$$

(d) $x \cdot y$

(e) $x \cdot z$

(f) $x \cdot y + x \cdot z$

12b. $x + y \cdot z = (x + y) \cdot (x + z)$

[Figure 2.17 from the textbook]

Try to prove these ones at home

13a.
$$x + x \cdot y = x$$

13b. $x \cdot (x + y) = x$

14a.
$$x \cdot y + x \cdot \overline{y} = x$$

14b. $(x + y) \cdot (x + \overline{y}) = x$

DeMorgan's Theorem

15a.
$$\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$$

15b. $\overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$

Proof of DeMorgan's theorem

x
 y
 x
 y

$$\bar{x}$$
 \bar{y}
 \bar{x}
 \bar{y}
 \bar{x}
 \bar{y}

 0
 0
 0
 1
 1
 1
 1

 0
 1
 0
 1
 1
 0
 1

 1
 0
 0
 1
 0
 1
 1

 1
 1
 0
 0
 0
 0
 0

 LHS
 RHS

Alternative Proof of DeMorgan's theorem

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Let's prove DeMorgan's theorem

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + y$	\bar{x}	\bar{y}	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1					
		LI	LHS			IS

Try to prove these ones at home

16a.
$$x + \overline{x} \cdot y = x + y$$

16b. $x \cdot (\overline{x} + y) = x \cdot y$

17a.
$$x^{\bullet}y + y^{\bullet}z + \overline{x}^{\bullet}z = x^{\bullet}y + \overline{x}^{\bullet}z$$

17b. $(x+y)^{\bullet}(y+z)^{\bullet}(\overline{x}+z) = (x+y)^{\bullet}(\overline{x}+z)$

Venn Diagram Example Proof of Property 17a

17a.
$$x^{\bullet}y + y^{\bullet}z + \overline{x}^{\bullet}z = x^{\bullet}y + \overline{x}^{\bullet}z$$

Left-Hand Side

Left-Hand Side

Right-Hand Side

[Figure 2.16 from the textbook]

Left-Hand Side

 $y \cdot z$

These two are equal

 $x \cdot y + \overline{x} \cdot z + y \cdot z$

Right-Hand Side

 $x \cdot y$

 $\bar{x} \cdot z$

[Figure 2.16 from the textbook]

Questions?

THE END