

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

NAND and NOR Logic Networks

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

HW2 is due on Wednesday Sep 7

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 12 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
 - Staple all of your pages together
- If any of these are missing, then you will lose 10% of your grade for that homework.

Labs Next Week

- If your lab is on Mondays, i,e.,
- Section N: Mondays, 9:00 11:50 am (Coover Hall, room 1318)
- Section P: Mondays, 12:10 3:00 pm (Coover Hall, room 1318)
- Section R: Mondays, 5:10 8:00 pm (Coover Hall, room 1318)
- You will have 2 labs in one on September 12.
- That is, Lab #2 and Lab #3.

Labs Next Week

- If your recitation is on Mondays, please go to one of the other 9 recitations next week:
- Section U: Tuesday 11:00 AM 1:50 PM (Coover Hall, room 2050)
 Section M: Tuesday 2:10 PM 5:00 PM (Coover Hall, room 2050)
 Section J: Wednesday 8:00 AM 10:50 AM (Coover Hall, room 2050)
 Section T: Wednesday 6:10 PM 9:00 PM (Coover Hall, room 1318)
 Section Q: Thursday 11:00 AM 1:50 PM (Coover Hall, room 2050)
 Section V: Thursday 11:00 AM 1:50 PM (Coover Hall, room 1318)
 Section L: Thursday 2:10 PM 5:00 PM (Coover Hall, room 2050)
 Section G: Friday 11:00 AM 1:50 PM (Coover Hall, room 2050)
- This is only for next week. And only for the recitation (first hour).
 You won't be able to stay for the lab as the sections are full.

Quick Review

The Three Basic Logic Gates

$$x_1$$
 x_2
 $x_1 \cdot x_2$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $\begin{bmatrix} x_1 + x_2 \end{bmatrix}$

NOT gate

AND gate

OR gate

Truth Table for NOT

<i>X</i>	\overline{x}
0	1
1	0

Truth Table for AND

x_1	x_2	$x_1 \cdot x_2$
0 0 1	0 1 0	0 0 0

Truth Table for OR

x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1
-	-	*

DeMorgan's Theorem

15a.
$$\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$$

15b. $\overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$

Synthesize the Following Function

x ₁	X ₂	f(x ₁ ,x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

Split the function into 4 functions

X ₁	X ₂	$f_{00}(x_1,x_2)$	$f_{01}(x_1,x_2)$	f ₁₀ (x ₁ ,x ₂)	f ₁₁ (x ₁ ,x ₂)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

Split the function into 4 functions

X ₁	X ₂	$f_{00}(x_1,x_2)$	$f_{01}(x_1,x_2)$	f ₁₀ (x ₁ ,x ₂)	f ₁₁ (x ₁ ,x ₂)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

Write Expressions for all four

X ₁	X ₂	f ₀₀ (x ₁ ,x ₂)	f ₀₁ (x ₁ ,x ₂)	f ₁₀ (x ₁ ,x ₂)	f ₁₁ (x ₁ ,x ₂)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

$$\overline{x}_1\overline{x}_2$$

$$\overline{x}_1\overline{x}_2$$
 \overline{x}_1x_2 0 x_1x_2

Then just add them together

X ₁	X ₂	$f_{00}(x_1,x_2)$	f ₀₁ (x ₁ ,x ₂)	f ₁₀ (x ₁ ,x ₂)	f ₁₁ (x ₁ ,x ₂)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$$

Example 2.10

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1	$m_1 = \overline{x}_1 \overline{x}_2 x_3$	$M_1 = x_1 + x_2 + \overline{x}_3$
2	0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x_3$
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \overline{x}_2 x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$$

The SOP expression is:

$$f = m_2 + m_3 + m_4 + m_6 + m_7$$

= $\bar{x}_1 x_2 \bar{x}_3 + \bar{x}_1 x_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 \bar{x}_3 + x_1 x_2 x_3$

This could be simplified as follows:

$$f = \overline{x}_1 x_2 (\overline{x}_3 + x_3) + x_1 (\overline{x}_2 + x_2) \overline{x}_3 + x_1 x_2 (\overline{x}_3 + x_3)$$

$$= \overline{x}_1 x_2 + x_1 \overline{x}_3 + x_1 x_2$$

$$= (\overline{x}_1 + x_1) x_2 + x_1 \overline{x}_3$$

$$= x_2 + x_1 \overline{x}_3$$

Example 2.12

Implement the function $f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$,

which is equivalent to $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$
_1	0	0	1	$m_1 = \overline{x}_1 \overline{x}_2 x_3$	$M_1 = x_1 + x_2 + \overline{x}_3$
2	0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x_3$
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \overline{x}_2 x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$$

The POS expression is:

$$f = M_0 \cdot M_1 \cdot M_5$$

= $(x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$

This could be simplified as follows:

$$f = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$$

$$= ((x_1 + x_2) + x_3)((x_1 + x_2) + \overline{x}_3)(x_1 + (x_2 + \overline{x}_3))(\overline{x}_1 + (x_2 + \overline{x}_3))$$

$$= ((x_1 + x_2) + x_3\overline{x}_3)(x_1\overline{x}_1 + (x_2 + \overline{x}_3))$$

$$= (x_1 + x_2)(x_2 + \overline{x}_3)$$

Two New Logic Gates

NAND Gate

x_1	x_2	f
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

x_1	x_2	f
0	0	1
0	1	0
1	0	0
1	1	0

AND vs NAND

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $\begin{bmatrix} x_1 \cdot x_2 \end{bmatrix}$

$$x_1$$
 x_2
 x_2

x_1	x_2	f
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

AND followed by **NOT** = **NAND**

$$x_1$$
 x_2
 $x_1 \cdot x_2$

x_1	x_2	<u>f</u>	<u>f</u>
0	0	0	1
0	0 1 0	0	1
1	0	0	1
1	1	1	0

$$\begin{array}{c|cc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

NAND followed by NOT = AND

$$x_1$$
 x_2
 $x_1 \cdot x_2$

x_1	x_2		<u>f</u>
0	0		0
0	1 0	1	0
1			0
1	1	0	1

$$egin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$$

OR vs NOR

$$x_1$$
 x_2 $x_1 + x_2$

$$x_1$$
 x_2
 $\overline{x_1 + x_2}$

x_{I}	x_2	$\int f$
0	0	0
0	1	1
1	0	1
1	1	1

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

OR followed by NOT = NOR

$$x_1$$
 x_2
 $x_1 + x_2$
 x_2
 $x_1 + x_2$

$$x_1$$
 x_2
 $\overline{x_1 + x_2}$

x_1	x_2	$\int f$	f
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

NOR followed by NOT = OR

$$x_1$$
 x_2
 $x_1 + x_2$

x_1	x_2	$\int f$	\underline{f}
0	0	1	0
0	0 1 0	0	1
1	0	0	1
1	1	$\mid 0$	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

Why do we need two more gates?

Why do we need two more gates?

They can be implemented with fewer transistors.

(more about this later)

They are simpler to implement, but are they also useful?

Building a NOT Gate with NAND

\mathcal{X}	$\boldsymbol{\mathcal{X}}$	f
0	0	1
0	1	1
1	0	1
1	1	0

Building a NOT Gate with NAND

Building a NOT Gate with NAND

Thus, the two truth tables are equal!

Building an AND gate with NAND gates

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR gate with NAND gates

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Implications

Any Boolean function can be implemented with only NAND gates!

NOR gate with NAND gates

Desired NOR Gate

NAND Construction

 $\mathbf{Q} = \mathsf{NOT}(\mathbf{A} \ \mathsf{OR} \ \mathbf{B})$

= NOT(NOT(A AND A) AND NOT(B AND B)]}

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	0

XOR gate with NAND gates

Desired XOR Gate

Q = A XOR B

NAND Construction

= NOT[NOT{**A** AND NOT(**A** AND **B**)} AND NOT{**B** AND NOT(**A** AND **B**)}]

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NAND gates

Desired XNOR Gate

 $\mathbf{Q} = \mathsf{NOT}(\mathbf{A} \mathsf{XOR} \mathbf{B})$

NAND Construction

= NOT[NOT[NOT(**A** AND NOT(**A** AND **B**)} AND NOT(**B** AND NOT(**A** AND **B**)}]]

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

Building a NOT Gate with NOR

$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$	f
0	0	1
0	1	0
1	0	0
1	1	0

Building a NOT Gate with NOR

Building a NOT Gate with NOR

\mathcal{X}	\overline{x}
0	1
1	0

Thus, the two truth tables are equal!

Building an OR gate with NOR gates

Desired Gate

NOR Construction

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Let's build an AND gate with NOR gates

Let's build an AND gate with NOR gates

Desired Gate

NOR Construction

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Implications

Any Boolean function can be implemented with only NOR gates!

NAND gate with NOR gates

Desired Gate

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

XOR gate with NOR gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NOR gates

Desired XNOR Gate

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

The following examples came from this book

DeMorgan's theorem in terms of logic gates

DeMorgan's theorem in terms of logic gates

Function Synthesis

Using NAND gates to implement a sum-of-products

Using NOR gates to implement a product-of sums

Example 2.13

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NOR gates.

Example 2.13

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NOR gates.

The POS expression is: $f = (x_1 + x_2)(x_2 + \overline{x_3})$

NOR-gate realization of the function

(a) POS implementation

(b) NOR implementation

Example 2.14

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NAND gates.

Example 2.14

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NAND gates.

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$

NAND-gate realization of the function

(a) SOP implementation

(b) NAND implementation

Questions?

THE END