

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

NAND and NOR Logic Networks

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW2 is due on Wednesday Sep 7

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 12 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Staple all of your pages together
- If any of these are missing, then you will lose 10% of your grade for that homework.

Labs Next Week

- If your lab is on Mondays, $\mathbf{i , e} .$,
- Section N: Mondays, 9:00-11:50 am (Coover Hall, room 1318)
- Section P: Mondays, 12:10-3:00 pm (Coover Hall, room 1318)
- Section R: Mondays, 5:10-8:00 pm (Coover Hall, room 1318)
- You will have 2 labs in one on September 12.
- That is, Lab \#2 and Lab \#3.

Labs Next Week

- If your recitation is on Mondays, please go to one of the other 9 recitations next week:
- Section U: Tuesday 11:00 AM - 1:50 PM (Coover Hall, room 2050) Section M: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2050) Section J: Wednesday 8:00 AM - 10:50 AM (Coover Hall, room 2050) Section T: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 1318) Section Q: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 2050) Section V: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318) Section L: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 2050) Section K: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 2050) Section G: Friday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
- This is only for next week. And only for the recitation (first hour). You won't be able to stay for the lab as the sections are full.

Quick Review

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

x_{1}	x_{2}	$x_{1}+x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

DeMorgan's Theorem

15a.
 $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$
 15b.
 $\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

Synthesize the Following Function

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

Split the function into 4 functions

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathrm{f}_{00}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{01}\left(\mathrm{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{10}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

Split the function into 4 functions

\mathbf{x}_{1}	\mathbf{x}_{2}	$f_{00}\left(\mathbf{x}_{1}, x_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, x_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

Write Expressions for all four

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

$\bar{x}_{1} \bar{x}_{2}$
$\bar{x}_{1} x_{2}$

Then just add them together

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	0
1	1	0	0	0	1

$f\left(x_{1}, x_{2}\right)=\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+0+x_{1} x_{2}$

Example 2.10

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$

Minterms and Maxterms
 (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(2,3,4,6,7)
$$

- The SOP expression is:

$$
\begin{aligned}
f & =m_{2}+m_{3}+m_{4}+m_{6}+m_{7} \\
& =\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}
\end{aligned}
$$

- This could be simplified as follows:

$$
\begin{aligned}
f & =\bar{x}_{1} x_{2}\left(\bar{x}_{3}+x_{3}\right)+x_{1}\left(\bar{x}_{2}+x_{2}\right) \bar{x}_{3}+x_{1} x_{2}\left(\bar{x}_{3}+x_{3}\right) \\
& =\bar{x}_{1} x_{2}+x_{1} \bar{x}_{3}+x_{1} x_{2} \\
& =\left(\bar{x}_{1}+x_{1}\right) x_{2}+x_{1} \bar{x}_{3} \\
& =x_{2}+x_{1} \bar{x}_{3}
\end{aligned}
$$

Example 2.12

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Pi \mathrm{M}(0,1,5)$,
which is equivalent to $f\left(x_{1}, x_{2}, x_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

$f\left(x_{1}, x_{2}, x_{3}\right)=\Pi M(0,1,5)$

- The POS expression is:

$$
\begin{aligned}
f & =M_{0} \cdot M_{1} \cdot M_{5} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right)
\end{aligned}
$$

- This could be simplified as follows:

$$
\begin{aligned}
f & =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\bar{x}_{3}\right)\left(x_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right) \\
& =\left(\left(x_{1}+x_{2}\right)+x_{3}\right)\left(\left(x_{1}+x_{2}\right)+\bar{x}_{3}\right)\left(x_{1}+\left(x_{2}+\bar{x}_{3}\right)\right)\left(\bar{x}_{1}+\left(x_{2}+\bar{x}_{3}\right)\right) \\
& =\left(\left(x_{1}+x_{2}\right)+x_{3} \bar{x}_{3}\right)\left(x_{1} \bar{x}_{1}+\left(x_{2}+\bar{x}_{3}\right)\right) \\
& =\left(x_{1}+x_{2}\right)\left(x_{2}+\bar{x}_{3}\right)
\end{aligned}
$$

Two New Logic Gates

NAND Gate

NOR Gate

$$
\begin{array}{ll|l}
x_{1} & x_{2} & \mathrm{f} \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}
$$

AND vs NAND

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

AND followed by NOT = NAND

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

NAND followed by NOT = AND

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

f
0
0
0
1

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

OR vs NOR

$$
\begin{array}{ll|l}
x_{1} & x_{2} & \mathrm{f} \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}
$$

x_{1}	x_{2}	f
0	0	1
0	1	0
1	0	0
1	1	0

OR followed by NOT = NOR

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

f
1
0
0
0

x_{1}	x_{2}	f
0	0	1
0	1	0
1	0	0
1	1	0

NOR followed by NOT = OR

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

Why do we need two more gates?

Why do we need two more gates?

They can be implemented with fewer transistors.
(more about this later)

They are simpler to implement, but are they also useful?

Building a NOT Gate with NAND

x	\bar{x}
0	1
1	0

x	x	f
0	0	1
0	1	1
1	0	1
1	1	0

Building a NOT Gate with NAND

x	\bar{x}
0	1
1	0

Building a NOT Gate with NAND

x	\bar{x}
0	1
1	0

Thus, the two truth tables are equal!

Building an AND gate with NAND gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR gate with NAND gates

Implications

Any Boolean function can be implemented with only NAND gates!

NOR gate with NAND gates

Desired NOR Gate
NAND Construction

= NOT\{ NOT[NOT(A AND A) AND
NOT(B AND B)]\}

Truth Table		
Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	0

XOR gate with NAND gates

Desired XOR Gate

$\mathbf{Q}=\mathbf{A} \operatorname{XOR} \mathbf{B}$

NAND Construction

$=$ NOT[NOT\{A AND NOT(A AND B) $\}$ AND
NOT\{B AND NOT(A AND B)\}]
Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NAND gates

Desired XNOR Gate
NAND Construction

$\mathbf{Q}=\operatorname{NOT}(\mathbf{A X O R B})$

Truth Table		
Input A Input B Output Q		
0	0	1
0	1	0
1	0	0
1	1	1

Building a NOT Gate with NOR

x	\bar{x}
0	1
1	0

x	x	f
0	0	1
0	1	0
1	0	0
1	1	0

Building a NOT Gate with NOR

x	\bar{x}
0	1
1	0

Building a NOT Gate with NOR

Thus, the two truth tables are equal!

Building an OR gate with NOR gates

Desired Gate
NOR Construction

Truth Table		
Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Let's build an AND gate with NOR gates

Let's build an AND gate with NOR gates

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Implications

Any Boolean function can be implemented with only NOR gates!

NAND gate with NOR gates

XOR gate with NOR gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NOR gates

Desired XNOR Gate
NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

The following examples came from this book

[Platt 2009]

[Platt 2009]

[Platt 2009]

[Platt 2009]

[Platt 2009]

[Platt 2009]

DeMorgan's theorem in terms of logic gates

DeMorgan's theorem in terms of logic gates

Function Synthesis

Using NAND gates to implement a sum-of-products

[Figure 2.27 from the textbook]

Using NOR gates to implement a product-of sums

[Figure 2.28 from the textbook]

Example 2.13

Implement the function $f\left(x_{1}, x_{2}, x_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NOR gates.

Example 2.13

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NOR gates.

The POS expression is: $f=\left(x_{1}+x_{2}\right)\left(x_{2}+\bar{x}_{3}\right)$

NOR-gate realization of the function

(a) POS implementation

(b) NOR implementation

Example 2.14

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NAND gates.

Example 2.14

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NAND gates.

The SOP expression is: $f=x_{2}+x_{1} \bar{x}_{3}$

NAND-gate realization of the function

(a) SOP implementation

(b) NAND implementation
[Figure 2.30 from the textbook]

Questions?

THE END

