

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 12 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please
- Staple your pages

Administrative Stuff

TA Office Hours:

- 11:00am-1:00pm on Wednesdays (Jinyuan Jia)

Location: TLA (Coover Hall - first floor)

- 9:50am-11:50am on Thursday (Siyuan Lu)

Location: TLA (Coover Hall - first floor)

Administrative Stuff

- Homework Solutions will be posted on BlackBoard

Quick Review

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

You can build any circuit using only these three gates

Figure B.21. A 7400-series chip.

Figure B.22. An implementation of $f=x_{1} x_{2}+\bar{x}_{2} x_{3}$.

NAND Gate

NOR Gate

$$
\begin{array}{ll|l}
x_{1} & x_{2} & \mathrm{f} \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}
$$

AND followed by NOT = NAND

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

NAND followed by NOT = AND

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

f
0
0
0
1

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

OR followed by NOT = NOR

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

f
1
0
0
0

x_{1}	x_{2}	f
0	0	1
0	1	0
1	0	0
1	1	0

NOR followed by NOT = OR

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

Why do we need two more gates?

They can be implemented with fewer transistors.
(more about this later)

Building a NOT Gate with NAND

x	\bar{x}
0	1
1	0

Thus, the two truth tables are equal!

Building an AND gate with NAND gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR gate with NAND gates

Implications

Any Boolean function can be implemented with only NAND gates!

Implications

Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!

Another Synthesis Example

Truth table for a three-way light control

Minterms and Maxterms
 (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Let's Derive the SOP form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Let's Derive the SOP form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
f & =m_{1}+m_{2}+m_{4}+m_{7} \\
& =\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}
\end{aligned}
$$

Sum-of-products realization

[Figure 2.32a from the textbook]

Let's Derive the POS form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Let's Derive the POS form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
f & =M_{0} \cdot M_{3} \cdot M_{5} \cdot M_{6} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+x_{3}\right)
\end{aligned}
$$

Product-of-sums realization

[Figure 2.32b from the textbook]

Multiplexers

2-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $\mathbf{s}=0$, then the output is equal to \mathbf{x}_{1}
- If $\mathbf{s}=1$, then the output is equal to \mathbf{x}_{2}

Graphical Symbol for a 2-1 Multiplexer

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

Truth Table for a 2-1 Multiplexer

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

[Figure 2.33a from the textbook]

Let's Derive the SOP form

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Let's Derive the SOP form

$s x_{1} x_{2}$	$f\left(s, x_{1}, x_{2}\right)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Let's Derive the SOP form

| s | x_{1} | x_{2} |
| :---: | :---: | :---: | \left\lvert\, \(f\left(s, x_{1}, x_{2}\right) ~\left(\left.\begin{array}{ccc}0 \& 0

\hline 0 \& 0 \& 0\end{array} \right\rvert\,\right.\right.\)

Where should we put the negation signs?

$$
\begin{array}{lll}
s & x_{1} & x_{2} \\
s & x_{1} & x_{2} \\
& & x_{1} \\
x_{2}
\end{array}
$$

Let's Derive the SOP form

Let's Derive the SOP form

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
\begin{aligned}
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
\end{aligned}
$$

Let's simplify this expression

$$
\begin{aligned}
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
\end{aligned}
$$

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

More Compact Truth-Table Representation

$\left.\begin{array}{cc||c}\hline s & x_{1} & x_{2} \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

(a)Truth table
[Figure 2.33 from the textbook]

4-1 Multiplexer (Definition)

- Has four inputs: $\mathbf{w}_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and \mathbf{s}_{0}
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

4-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and $\mathbf{s}_{\mathbf{0}}$
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

We'll talk more about this when we get
to chapter 4 , but here is a quick preview.

Graphical Symbol and Truth Table

(a) Graphic symbol

(b) Truth table

The long-form truth table

The long-form truth table

The long-form truth table

The long-form truth table

The long-form truth table

$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	F	$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}$	F	$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	F	$\underline{\mathrm{S}_{1} \mathrm{~S}_{0}}$			F
00	0000	0	01	$\begin{array}{llllll}0 & 0 & 0 & 0\end{array}$	0	10	$\begin{array}{lllll}0 & 0 & 0 & 0\end{array}$	0	11		O) 000	0
	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	1		$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	0		$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	0			$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	
	$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	0		$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	1		00010	0			$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	
	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	1		$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	1		$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	0			$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	
	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0		$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0		$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	1			$0{ }^{0} 1000$	
	$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	1		$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	0		$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1			$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	
	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	0		$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	1		$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1			$0 \cdot 1 \begin{array}{llll}0 & 1 & 0\end{array}$	
	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1		$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1		$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1			0 1 1 1 1	
	1000	0		$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$	0		1000	0			10000	
	10001	1		$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	0		$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	0			$1{ }_{1}^{1} 00001$	
	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	0		$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1		$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	0			$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	
	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1		$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1		$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	0			$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	
	1100	0		$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	0		1100	1			11000	
	1101	1		$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	0		1101	1			1 1 0 1	
	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	0		$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1		11110	1			1 1 1 0	
	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	1		$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1		1 1 1 1				$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	

4-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

S_{1}
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

\sim
http://en.wikipedia.org/wiki/Railroad_switch]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

That is different from the SOP form of the 4-1 multiplexer shown below, which uses less gates

16-1 Multiplexer

[Figure 4.4 from the textbook]

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END

