

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Intro to Verilog

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is due on Monday Sep 12 @ 4p

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 19 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please
- Staple your pages

Administrative Stuff

TA Office Hours:

- 11:00am-1:00pm on Wednesdays (Jinyuan Jia)

Location: TLA (Coover Hall - first floor)

- 9:50am-11:50am on Thursday (Siyuan Lu)

Location: TLA (Coover Hall - first floor)

Administrative Stuff

- Midterm Exam \#1
- When: Friday Sep 23.
- Where: This classroom
- What: Chapter 1 and Chapter 2 plus number systems
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).
- More details to follow.

Quick Review

NAND followed by NOT = AND

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

f
0
0
0
1

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

DeMorgan's Theorem

15a.
 $\overline{\mathbf{x} \cdot \mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$

DeMorgan's Theorem

15a. $\overline{\mathbf{x} \cdot \mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$

Sum-Of-Products

2-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $\mathbf{s}=0$, then the output is equal to \mathbf{x}_{1}
- If $\mathbf{s}=1$, then the output is equal to \mathbf{x}_{2}

Graphical Symbol for a 2-1 Multiplexer

Let's Derive the SOP form

Let's simplify this expression

$$
\begin{aligned}
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
\end{aligned}
$$

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

More Compact Truth-Table Representation

$\left.\begin{array}{cc||c}\hline s & x_{1} & x_{2} \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

(a)Truth table
[Figure 2.33 from the textbook]

4-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and \mathbf{s}_{0}
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

We'll talk more about this when we get
to chapter 4 , but here is a quick preview.

Graphical Symbol and Truth Table

(a) Graphic symbol

(b) Truth table

The long-form truth table

4-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

S_{1}
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

\sim
http://en.wikipedia.org/wiki/Railroad_switch]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

That is different from the SOP form of the 4-1 multiplexer shown below, which uses less gates

16-1 Multiplexer

[Figure 4.4 from the textbook]

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

7-Segment Display Example

Display of numbers

(a) Logic circuit and 7-segment display

s_{1}	s_{0}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
1	0	1	0	1	1	0	0	0
0	1	0	1	1	0	1	1	0

(b) Truth table

Display of numbers

s_{1}	s_{0}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	0	1	1	0	0	0	0
1	0	1	1	0	1	1	0	1

Display of numbers

s_{1}	s_{0}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	0	1	1	0	0	0	0
1	0	1	1	0	1	1	0	1
		$a=\overline{s_{0}}$		$c=\overline{s_{l}}$		$e=\bar{s}_{o}$		$g=s_{l} s^{\prime}$
			$b=$		$d=\overline{s_{0}} \quad f=\bar{s}_{1} \bar{s}_{0}$			

Intro to Verilog

History

- Created in 1983/1984
- Verilog-95 (IEEE standard 1364-1995)
- Verilog 2001 (IEEE Standard 1364-2001)
- Verilog 2005 (IEEE Standard 1364-2005)
- SystemVerilog
- SystemVerilog 2009 (IEEE Standard 1800-2009).

HDL

- Hardware Description Language
- Verilog HDL
- VHDL

Verilog HDL != VHDL

- These are two different Languages!
- Verilog is closer to C
- VHDL is closer to Ada

[Figure 2.35 from the textbook]

"Hello World" in Verilog

module main;
initial
begin \$display("Hello world!"); \$finish;
end
endmodule

[http://en.wikipedia.org/wiki/Verilog]

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

How to specify a NOT gate in Verilog

NOT gate

How to specify a NOT gate in Verilog

we'll use the letter y for the output

NOT gate

How to specify a NOT gate in Verilog

$\operatorname{not}(y, x)$

NOT gate
Verilog code

How to specify an AND gate in Verilog

and (f, $\mathrm{x} 1, \mathrm{x} 2$)

AND gate
Verilog code

How to specify an OR gate in Verilog

or (f, x1, x2)

OR gate
Verilog code

2-1 Multiplexer

[Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer


```
module example1 (x1, x2, s, f);
    input x1, x2, s;
    output f;
    not (k, s);
    and (g, k, x1);
    and (h, s, x2);
    or (f, g, h);
```

endmodule

Verilog Code for a 2-1 Multiplexer

module example3 (x1, x2, s, f);
input $\mathrm{x} 1, \mathrm{x} 2, \mathrm{~s}$;
output f ;
assign $\mathrm{f}=(\sim \mathrm{s} \& \mathrm{x} 1) \mid(\mathrm{s} \& \mathrm{x} 2)$;
endmodule

Verilog Code for a 2-1 Multiplexer


```
// Behavioral specification
module example5 (x1, x2, s, f);
    input x1, x2, s;
    output f; I
    reg f;
    always @(x1 or x2 or s)
    if (s== 0)
        f=x1;
    else
        f = x 2;
endmodule
```


Verilog Code for a 2-1 Multiplexer

// Behavioral specification
module example5 (input $\mathrm{x} 1, \mathrm{x} 2$, s , output reg f);

$$
\begin{gathered}
\text { always @ }(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~s}) \\
\text { if }(\mathrm{s}==0) \\
\mathrm{f}=\mathrm{x} 1 ; \\
\text { else } \\
\mathrm{f}=\mathrm{x} 2 ;
\end{gathered}
$$

endmodule

Another Example

Let's Write the Code for This Circuit

[Figure 2.39 from the textbook]

Let's Write the Code for This Circuit


```
module example2 (x1, x2, x3, x4, f, g, h);
    input x1, x2, x3, x4;
    output f,g,h;
    and (z1, x1, x3);
    and (z2, x2, x4);
    or (g, z1, z2);
    or (z3, x1,~x3);
    or (z4,~x2, x4);
    and (h, z3, z4);
    or (f, g, h);
endmodule
```


Let's Write the Code for This Circuit

$$
\begin{aligned}
& \text { module example } 4(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{f}, \mathrm{~g}, \mathrm{~h}) ; \\
& \text { input } \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4 ; \\
& \text { output } \mathrm{f}, \mathrm{~g}, \mathrm{~h} ; \\
& \\
& \quad \begin{array}{l}
\text { assign } \mathrm{g}=(\mathrm{x} 1 \& \mathrm{x} 3) \mid(\mathrm{x} 2 \& \mathrm{x} 4) ; \\
\text { assign } \mathrm{h}=(\mathrm{x} 1 \mid \sim \mathrm{x} 3) \&(\sim \mathrm{x} 2 \mid \mathrm{x} 4) ; \\
\\
\text { assign } \mathrm{f}=\mathrm{g} \mid \mathrm{h} ;
\end{array}
\end{aligned}
$$

endmodule

Yet Another Example

A logic circuit with two modules

Top-level module

[Figure 2.44 from the textbook]

The adder module

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b & \frac{+0}{+b} & \frac{+1}{01} & \frac{+0}{01} & \frac{+1}{10}
\end{array}
$$

(a) Evaluation of $S=a+b$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(b) Truth table

(c) Logic network

The adder module

// An adder module module adder (a, b, s1, s0); input a, b; output s 1 , s0;
assign $\mathrm{s} 1=\mathrm{a} \& \mathrm{~b}$;
$\operatorname{assign} \mathrm{s} 0=\mathrm{a}^{\wedge} \mathrm{b}$;
endmodule

The display module

s_{1}	s_{0}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	0	1	1	0	0	0	0
1	0	1	1	0	1	1	0	1

$$
\begin{gathered}
a=\overline{s_{0}} \quad c=\overline{s_{1}} \quad e=\overline{s_{0}} \quad g=s_{1} \overline{s_{0}} \\
b=1 \quad d=\overline{s_{0}} \quad f=\overline{s_{1}} \overline{s_{0}}
\end{gathered}
$$

The display module

$$
\begin{array}{ll}
a=\overline{s_{0}} & \begin{array}{l}
/ / \text { A module for driving a } 7-\text { segment display } \\
\text { module display }(\mathrm{s} 1, \mathrm{~s} 0, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}) ; \\
\text { input } \mathrm{s} 1, \mathrm{~s} 0 ;
\end{array} \\
b=1 & \begin{array}{l}
\text { output } \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g} ;
\end{array} \\
c=\overline{s_{1}} & \begin{array}{l}
\text { assign } \mathrm{a}=\sim \mathrm{s} 0 ; \\
\text { assign } \mathrm{b}=1 ;
\end{array} \\
e=\overline{s_{0}} & \begin{array}{l}
\text { assign } \mathrm{c}=\sim \mathrm{s} 1 ; \\
\text { assign } \mathrm{d}=\sim \mathrm{s} 0 ; \\
\text { assign } \mathrm{e}=\sim \mathrm{s} 0 ;
\end{array} \\
f=\overline{s_{1}} \overline{s_{0}} & \begin{array}{l}
\text { assign } \mathrm{f}=\sim \mathrm{s} 1 \& \sim \mathrm{~s} 0 ; \\
\text { assign } \mathrm{g}=\mathrm{s} 1 \& \sim \mathrm{~s} 0 ;
\end{array} \\
g=s_{1} \overline{s_{0}} & \begin{array}{l}
\text { andmodule }
\end{array}
\end{array}
$$

Putting it all together

Top-level module

Questions?

THE END

