

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW5 is out
- It is due on Monday Oct 3 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please
- Staple your pages

Administrative Stuff

- Labs next week
- Mini-Project
- This is worth 3\% of your grade (x2 labs)
- http://www.ece.iastate.edu/~alexs/classes/ 2016_Fall_281/labs/Project-Mini/

Number Systems

$$
N=d_{n} B^{n}+d_{n-1} B^{n-1}+\cdots+d_{1} B^{1}+d_{0} B_{0}^{0}
$$

Number Systems

n-th digit (most significant)

0 -th digit
(least significant)

Number Systems

The Decimal System

$$
524_{10}=5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}
$$

The Decimal System

$$
\begin{aligned}
524_{10} & =5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0} \\
& =5 \times 100+2 \times 10+4 \times 1 \\
& =500+20+4 \\
& =524_{10}
\end{aligned}
$$

Another Way to Look at This

Another Way to Look at This

Another Way to Look at This

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0 .

Base 7

$$
524_{7}=5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0}
$$

Base 7

Base 7

$524_{7}=5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0}$
most significant digit
least significant digit

Base 7

$$
\begin{aligned}
524_{7} & =5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0} \\
& =5 \times 49+2 \times 7+4 \times 1 \\
& =245+14+4 \\
& =263_{10}
\end{aligned}
$$

Another Way to Look at This

Binary Numbers (Base 2)

$$
1001_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
$$

Binary Numbers (Base 2)

Binary Numbers (Base 2)

$$
\begin{aligned}
1001_{2} & =1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& =1 \times 8+0 \times 4+0 \times 2+1 \times 1= \\
& =8+0+1 \\
& =9_{10}+0+0
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& 11101_{2}=1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& \begin{array}{lllll}
=1 \times 16+1 \times 8 & +1 \times 4 & +0 \times 2 & +1 \times 1 & = \\
=16 & +8 & +4 & +0 & +1
\end{array}
\end{aligned}
$$

Powers of 2

$$
\begin{array}{ll}
2^{10} & =1024 \\
2^{9} & =512 \\
2^{8} & =256 \\
2^{7} & =128 \\
2^{6} & = \\
2^{5} & = \\
2^{4} & =32 \\
2^{4} & =16 \\
2^{3} & = \\
2^{2} & = \\
2^{1} & = \\
2^{0} & = \\
2^{0}
\end{array}
$$

What is the value of this binary number?

- 00101100
- 0

0
1
0
1
1
0
0

- 0 * $2^{7}+0^{*} 2^{6}+1^{*} 2^{5}+0^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+0^{*} 2^{0}$
- 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1* $4+0 * 2+0 * 1$
- $0 * 128+0 * 64+1 * 32+0 * 16+1 * 8+1 * 4+0 * 2+0 * 1$
- 32+8+4 = 44 (in decimal)

Another Way to Look at This

Binary numbers

Unsigned numbers

- all bits represent the magnitude of a positive integer

Signed numbers

- left-most bit represents the sign of a number

Decimal	Binary	Octal	Hexadecimal
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0 A
11	01011	13	0 B
12	01100	14	0 C
13	01101	15	0 D
14	01110	16	0 E
15	01111	17	0 F
16	10000	20	10
17	10001	21	11
18	10010	22	12

Table 3.1. Numbers in different systems.

Adding two bits (there are four possible cases)

[Figure 3.1a from the textbook]

Adding two bits (the truth table)

[Figure 3.1b from the textbook]

Adding two bits (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(c) Circuit

(d) Graphical symbol

Addition of multibit numbers

$$
\begin{array}{rrr}
\text { Generated carries } & 1110 & \\
X=x_{4} x_{3} x_{2} x_{1} x_{0} & 01111 & (15)_{10} \\
+Y=y_{4} y_{3} y_{2} y_{1} y_{0} & +01010 & +(10)_{10} \\
\hline S=s_{4} s_{3} s_{2} s_{1} s_{0} & & -11001
\end{array}
$$

Bit position i
[Figure 3.2 from the textbook]

Problem Statement and Truth Table

Let's fill-in the two K-maps

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

[Figure 3.3c from the textbook]

This is called the Full-Adder

[Figure 3.3c from the textbook]

XOR Magic

$$
s_{i}=\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+\bar{x}_{i} \bar{y}_{i} c_{i}+x_{i} y_{i} c_{i}
$$

XOR Magic

$$
\begin{aligned}
s_{i} & =\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+\bar{x}_{i} \bar{y}_{i} c_{i}+x_{i} y_{i} c_{i} \\
s_{i} & =\left(\bar{x}_{i} y_{i}+x_{i} \bar{y}_{i}\right) \bar{c}_{i}+\left(\bar{x}_{i} \bar{y}_{i}+x_{i} y_{i}\right) c_{i} \\
& =\left(x_{i} \oplus y_{i}\right) \bar{c}_{i}+\overline{\left(x_{i} \oplus y_{i}\right)} c_{i} \\
& =\left(x_{i} \oplus y_{i}\right) \oplus c_{i}
\end{aligned}
$$

XOR Magic

$$
s_{i}=\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+\bar{x}_{i} \bar{y}_{i} c_{i}+x_{i} y_{i} c_{i}
$$

Can you prove this?

$$
\begin{aligned}
& s_{i}=\left(\bar{x}_{i} y_{i}+x_{i} \bar{y}_{i}\right) \bar{c}_{i}+\left(x_{i} \bar{y}_{i}+x_{i} y_{i}\right) c_{i} \\
&=\left(x_{i} \oplus y_{i}\right) \bar{c}_{i}+\left(\underline{x i}_{i} \oplus v_{i}\right) \\
& e_{i} \\
&=\left(x_{i} \oplus y_{i}\right) \oplus c_{i}
\end{aligned}
$$

XOR Magic

(s_{i} can be implemented in two different ways)

$$
s_{i}=x_{i} \oplus y_{i} \oplus c_{i}
$$

A decomposed implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram
[Figure 3.4 from the textbook]

The Full-Adder Abstraction

The Full-Adder Abstraction

We can place the arrows anywhere

n-bit ripple-carry adder

[Figure 3.5 from the textbook]

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Design Example:

Create a circuit that multiplies a number by 3

How to Get 3A from \mathbf{A} ?

- $3 A=A+A+A$
- $3 A=(A+A)+A$
- $3 A=2 A+A$

[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=?
$$

$542 \times 10=$?
$1245 \times 10=?$

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2 ?
011 times $2=$?

101 times $2=$?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by $2 ?$

$$
011 \text { times } 2=0110
$$

101 times 2 = 1010

110011 times $2=1100110$

Binary Multiplication by 2

What happens when we multiply a number by 2 ?

$$
011 \text { times } 2=0110
$$

101 times 2 = 1010

110011 times $2=1100110$

You simply add a zero as the rightmost number

[Figure 3.6b from the textbook]

[Figure 3.6b from the textbook]

3A
[Figure 3.6b from the textbook]

Questions?

THE END

