

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW5 is out
- It is due on Monday Oct 3 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please staple all of your pages together.

Administrative Stuff

- Labs Next Week
- Mini-Project
- This one is worth 3% of your grade.
- Make sure to get all the points.
- http://www.ece.iastate.edu/~alexs/classes/ 2016_Fall_281/labs/Project-Mini/

Quick Review

Adding two bits (there are four possible cases)

[Figure 3.1a from the textbook]

Adding two bits (the truth table)

[Figure 3.1b from the textbook]

Adding two bits (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(c) Circuit

(d) Graphical symbol

Addition of multibit numbers

Generated carries	1110	
$X=x_{4} x_{3} x_{2} x_{1} x_{0}$	01111	(15) 10
$+Y=y_{4} y_{3} y_{2} y_{1} y_{0}$	$+01010$	$+(10)_{10}$
$S=s_{4} s_{3} s_{2} s_{1} s_{0}$	11001	$(25){ }_{10}$

Bit position i
[Figure 3.2 from the textbook]

Analogy with addition in base 10

Analogy with addition in base 10

Analogy with addition in base 10

Analogy with addition in base 10

$$
\begin{array}{llll}
\mathrm{c}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0} \\
& \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
& \mathrm{y}_{2} & \mathrm{y}_{1} & \mathrm{Y}_{0} \\
\hline & \mathrm{~S}_{2} & \mathrm{~S}_{1} & \mathrm{~S}_{0}
\end{array}
$$

Problem Statement and Truth Table

Let's fill-in the two K-maps

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

[Figure 3.3c from the textbook]

This is called the Full-Adder

[Figure 3.3c from the textbook]

XOR Magic

(s_{i} can be implemented in two different ways)

$$
s_{i}=x_{i} \oplus y_{i} \oplus c_{i}
$$

A decomposed implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram
[Figure 3.4 from the textbook]

A decomposed implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram
[Figure 3.4 from the textbook]

The Full-Adder Abstraction

The Full-Adder Abstraction

We can place the arrows anywhere

n-bit ripple-carry adder

[Figure 3.5 from the textbook]

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Math Review: Subtraction

Math Review: Subtraction

$$
\begin{array}{r}
39 \\
-\quad 15 \\
\hline 24
\end{array}
$$

Math Review: Subtraction

Math Review: Subtraction

Math Review: Subtraction

Math Review: Subtraction

The problems in which row are easier to calculate?

The problems in which row are easier to calculate?

Why?

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100 \\
& =82+(99-64)+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

$$
=82+(100-64)-100
$$

$$
=82+(99+1-64)-100
$$

Does not require borrows

$$
=82+(99-64)+1-100
$$

9's Complement (subtract each digit from 9)

10's Complement

(subtract each digit from 9 and add 1 to the result)

Another Way to Do Subtraction

$$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

9's complement
 $$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =118-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+((99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =118-100 \quad \text { // Just deletet the leading } 1 . \\
& =18 \quad \text { // No need to subtract } 100 .
\end{aligned}
$$

Formats for representation of integers

(b) Signed number

Negative numbers can be represented in following ways

- Sign and magnitude
-1's complement
-2's complement

1's complement

Let K be the negative equivalent of an n-bit positive number P .
Then, in 1's complement representation K is obtained by subtracting P from $2^{n}-1$, namely

$$
K=\left(2^{n}-1\right)-P
$$

This means that K can be obtained by inverting all bits of P .

Find the 1's complement of ...

0101

0010

0111

Find the 1's complement of ...

0101
0010
1010
1101
0011
0111
1100

Just flip 1's to 0's and vice versa.

A) Example of 1's complement addition

$(+5)$
$+(+2)$
$(+7)$
---:
+00110
0111

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

[Figure 3.8 from the textbook]

A) Example of 1's complement addition

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

B) Example of 1's complement addition

(-5)
$+(+2)$
(-3)
---:
+0010
1100

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

[Figure 3.8 from the textbook]

B) Example of 1's complement addition

$$
\begin{array}{rr}
(-5) & 1010 \\
+(+2) \\
\hline(-3) & +0010 \\
\hline 1100
\end{array}
$$

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

$$
\begin{array}{rr}
(+5) & 0101 \\
+(-2) \\
\hline(+3) & +1001 \\
\hline 10010
\end{array}
$$

$b_{3} b_{2} b_{1} b_{0}$	1 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

$$
\begin{array}{rr}
(+5) & 0101 \\
+(-2) & +1101 \\
\hline(+3) & 10010
\end{array}
$$

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

But this is 2 !

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

$$
\begin{array}{r}
(+5) \\
+(-2) \\
\hline(+3)
\end{array} \begin{array}{r}
0101 \\
+1101 \\
\hline \begin{array}{l}
10010 \\
\hline
\end{array} \\
\hline 0011
\end{array}
$$

We need to perform one more addition to get the result.

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

We need to perform one more addition to get the result.

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

D) Example of 1's complement addition

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

[Figure 3.8 from the textbook]

D) Example of 1's complement addition

$b_{3} b_{2} b_{1} b_{0}$	1 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

D) Example of 1's complement addition

$$
\begin{array}{r}
(-5) \\
+\begin{array}{r}
1010 \\
+(-7) \\
+1101 \\
\hline 0111
\end{array}
\end{array}
$$

But this is +7! | | |
| :---: | :---: |
| $b_{3} b_{2} b_{1} b_{0}$ | 1's complement |
| 0111 | +7 |
| 0110 | +6 |
| 0101 | +5 |
| 0100 | +4 |
| 0011 | +3 |
| 0010 | +2 |
| 0001 | +1 |
| 0000 | +0 |
| 1000 | -7 |
| 1001 | -6 |
| 1010 | -5 |
| 1011 | -4 |
| 1100 | -3 |
| 1101 | -2 |
| 1110 | -1 |
| 1111 | -0 |

D) Example of 1's complement addition

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

D) Example of 1's complement addition

$$
\begin{array}{r}
(-5) \\
+\begin{array}{r}
1010 \\
+(-7) \\
+1101 \\
\hline 0111 \\
\hline 1000
\end{array}
\end{array}
$$

We need to perform one more addition to get the result.

$b_{3} b_{2} b_{1} b_{0}$	1 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

2's complement

Let K be the negative equivalent of an n -bit positive number P .
Then, in 2' s complement representation K is obtained by subtracting P from $2^{\text {n }}$, namely

$$
K=2^{n}-P
$$

Deriving 2' s complement

For a positive n -bit number P , let K_{1} and K_{2} denote its 1' s and 2's complements, respectively.

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P} \\
& \mathrm{~K}_{2}=2^{\mathrm{n}}-\mathrm{P}
\end{aligned}
$$

Since $K_{2}=K_{1}+1$, it is evident that in a logic circuit the 2' s complement can computed by inverting all bits of P and then adding 1 to the resulting 1 ' s-complement number.

Find the 2's complement of ...

0101
 0010

0100
0111

Find the 2's complement of ...

0101
0010
1010
1101

0100
 1011

0111
1000

Invert all bits.

Find the 2's complement of ...

Then add 1.

Quick Way to find 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

Find the $\mathbf{2}$ ' s complement of ...

0101

0010

0100

0111

Find the $\mathbf{2}$ ' s complement of ...

0101
0010
. . . 0
0100
0111

Copy all bits that are 0 from right to left.

Find the $\mathbf{2}$ ' s complement of ...

0101
0010
. . . 1
. . 10
0100
0111
. 100

Stop at the first 1 . Copy that 1 as well.

Find the 2's complement of ...

0101
0010
1011
1110
0100
0111
1100
1001

Invert all remaining bits.

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

[Table 3.2 from the textbook]

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

The number circle for 2's complement

[Figure 3.11a from the textbook]

A) Example of 2's complement addition

[Figure 3.9 from the textbook]

B) Example of 2's complement addition

(-5)
$+(+2)$
(-3)
---:
+0010
1101

$b_{3} b_{2} b_{1} b_{0}$	2 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

C) Example of 2's complement addition

		$b_{3} b_{2} b_{1} b_{0}$	2's complement
		0111	+7
		0110	+6
		0101	+5
(+5)	0101	0100	+4
+ (-2)	+1110	0011	+3
		0010	+2
(+3)		0001	+1
	\triangle	0000	+0
		1000	-8
	ignore	1001	-7
		1010	-6
		1011	-5
		1100	-4
		1101	-3
		1110	-2
		1111	-1

[Figure 3.9 from the textbook]

D) Example of 2's complement addition

[Figure 3.9 from the textbook]

Example of 2's complement subtraction

\Rightarrow means take the 2's complement
[Figure 3.10 from the textbook]

Example of 2's complement subtraction

Example of 2's complement subtraction

$$
\begin{array}{r}
\begin{array}{r}
(+5) \\
-(-2)
\end{array} \\
\hline \begin{array}{l}
0101 \\
-1110
\end{array} \\
\hline+7)
\end{array} \quad \begin{array}{r}
0101 \\
+0010 \\
\hline 0111
\end{array}
$$

Example of 2's complement subtraction

(-5)	1011	1011
- (-2)	- 1110	+ 0010
(-3)		1101

Graphical interpretation of four-bit 2's complement numbers

(a) The number circle
(b) Subtracting 2 by adding its 2's complement
[Figure 3.11 from the textbook]

Take-Home Message

- Subtraction can be performed by simply adding the 2's complement of the second number, regardless of the signs of the two numbers.
- Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

[Figure 3.12 from the textbook]

XOR Tricks

control

XOR as a repeater

XOR as an inverter

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{l}
0111 \\
0010 \\
\hline 1001
\end{array} \\
& \begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
\hline 10101
\end{array}
\end{aligned}
$$

Examples of determination of overflow

01100
$(+7)$
$+(+2)$
$(+9)$
---:
0010
1001

00000
(-7)
$+\quad 1+2)$
(-5)
---:
1011

$$
\begin{array}{r}
11100 \\
+(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
\hline 10101
\end{array}
$$

$$
\begin{array}{r}
10000 \\
(-7) \\
+\quad 1001 \\
\hline(-9) \\
\hline 10111
\end{array}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
+(+7) \\
+(+2) \\
\hline(+9)
\end{array} \quad \begin{array}{r}
0100 \\
0010 \\
\hline 1001
\end{array}
\end{aligned}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& c_{4}=0 \\
& c_{3}=1 \\
& \begin{array}{r}
00100 \\
(+7) \\
+(+2) \\
\hline(+9) \\
\hline \quad 0111 \\
\hline 1001
\end{array} \\
& \begin{array}{r}
00000 \\
(-7) \\
+\quad 1+2) \\
\hline(-5) \quad \begin{array}{r}
1001 \\
\hline
\end{array} \quad 1011
\end{array} \\
& \begin{array}{l}
c_{4}=0 \\
c_{3}=0
\end{array} \\
& \begin{array}{c}
c_{4}=1 \\
c_{3}=1
\end{array} \\
& \begin{array}{r}
+(+7) \\
+\quad \begin{array}{r}
11 \\
\hline
\end{array}+2111 \\
\hline(+5)
\end{array} \quad 10110 \\
& \begin{array}{r}
(-7) \\
+\quad 10000 \\
+(-2) \\
\hline(-9) \\
\hline 10111
\end{array} \\
& \begin{array}{l}
c_{4}=1 \\
c_{3}=0
\end{array}
\end{aligned}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& c_{4}=1 \\
& c_{3}=1
\end{aligned}
$$

$$
\begin{array}{r}
+\quad 11100 \\
+(+7) \\
\hline(+5)
\end{array}+\begin{array}{r}
0111 \\
\hline 10101
\end{array}
$$

Overflow occurs only in these two cases.

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{l}
c_{4}=1 \\
c_{3}=1
\end{array}
\end{aligned}
$$

$$
\text { Overflow }=\mathrm{c}_{3} \overline{\mathrm{c}}_{4}+\overline{\mathrm{c}}_{3} \mathrm{c}_{4}
$$

Examples of determination of overflow

$$
\text { Overflow }=\underbrace{c_{3} \bar{c}_{4}+\bar{c}_{3} c_{4}}_{\text {XOR }}
$$

Calculating overflow for 4-bit numbers with only three significant bits

$$
\begin{aligned}
\text { Overflow } & =c_{3} \bar{c}_{4}+\bar{c}_{3} c_{4} \\
& =c_{3} \oplus c_{4}
\end{aligned}
$$

Calculating overflow for n-bit numbers with only $\mathrm{n}-1$ significant bits

$$
\text { Overflow }=c_{n-1} \oplus c_{n}
$$

Another way to look at the overflow issue

$$
\begin{aligned}
& X=x_{3} x_{2} x_{1} x_{0} \\
& Y=y_{3} y_{2} y_{1} y_{0} \\
& S=s_{3} s_{2} s_{1} s_{0}
\end{aligned}
$$

Another way to look at the overflow issue

$$
\begin{aligned}
& X=x_{3} x_{2} x_{1} x_{0} \\
& Y=y_{3} y_{2} y_{1} y_{0} \\
& S=s_{3} s_{2} s_{1} s_{0}
\end{aligned}
$$

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.
Overflow $=x_{3} y_{3} \bar{s}_{3}+\bar{x}_{3} \bar{y}_{3} s_{3}$

Questions?

THE END

