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Administrative Stuff 
•  HW5 is out 

•  It is due on Monday Oct 3 @ 4pm. 

•  Please write clearly on the first page (in block 
capital letters) the following three things: 

§  Your First and Last Name 
§  Your Student ID Number 
§  Your Lab Section Letter 

•  Also, please staple all of your pages together. 
 



Administrative Stuff 
•  Labs Next Week 

•  Mini-Project 

•  This one is worth 3% of your grade. 

•  Make sure to get all the points. 

•  http://www.ece.iastate.edu/~alexs/classes/
2016_Fall_281/labs/Project-Mini/ 



Quick Review 



[ Figure 3.1a from the textbook ]	


Adding two bits 
(there are four possible cases) 



[ Figure 3.1b from the textbook ]	


Adding two bits 
(the truth table) 



[ Figure 3.1c from the textbook ]	


Adding two bits 
(the logic circuit) 



[ Figure 3.1c-d from the textbook ]	


The Half-Adder 



Bit position i 

Addition of multibit numbers 

[ Figure 3.2 from the textbook ]	




Analogy with addition in base 10 

c3 c2 c1 c0!
x2 x1 x0!
y2 y1 y0!

 s2 s1 s0!
!

+	




!
    3   8   9!
    1   5   7!
    5   4   6!

Analogy with addition in base 10 

+	




0   1   1   0!
    3   8   9!
    1   5   7!
    5   4   6!

Analogy with addition in base 10 

+	

carry	




Analogy with addition in base 10 

c3 c2 c1 c0!
x2 x1 x0!
y2 y1 y0!

 s2 s1 s0!
!

+	




Problem Statement and Truth Table 

[ Figure 3.3a from the textbook ]	
[ Figure 3.2b from the textbook ]	




Let’s fill-in the two K-maps 

[ Figure 3.3a-b from the textbook ]	




Let’s fill-in the two K-maps 

[ Figure 3.3a-b from the textbook ]	




The circuit for the two expressions 

[ Figure 3.3c from the textbook ]	




This is called the Full-Adder 

[ Figure 3.3c from the textbook ]	




XOR Magic 
(si can be implemented in two different ways) 
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(a) Block diagram 	


(b) Detailed diagram	


A decomposed implementation  
of the full-adder circuit 

[ Figure 3.4 from the textbook ]	
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(a) Block diagram 	


(b) Detailed diagram	


A decomposed implementation  
of the full-adder circuit 

[ Figure 3.4 from the textbook ]	
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The Full-Adder Abstraction 
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The Full-Adder Abstraction 
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We can place the arrows anywhere 
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MSB position	
 LSB position	


n-bit ripple-carry adder 

[ Figure 3.5 from the textbook ]	
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n-bit ripple-carry adder abstraction 
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n-bit ripple-carry adder abstraction 



The x and y lines are typically  
grouped together for better visualization,  
but the underlying logic remains the same 
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Math Review: Subtraction 
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??	




Math Review: Subtraction 
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Math Review: Subtraction 
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Math Review: Subtraction 
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Math Review: Subtraction 
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Math Review: Subtraction 
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The problems in which row are easier to calculate? 
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The problems in which row are easier to calculate? 

82	

64	
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18	
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Why?	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	


=  82 + (99 + 1 – 64) - 100  	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	


=  82 + (99 + 1 – 64) - 100  	


=  82 + (99 – 64) +1 - 100  	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	


=  82 + (99 + 1 – 64) - 100  	


=  82 + (99 – 64) +1 - 100  	

Does not require borrows	




9’s Complement 
(subtract each digit from 9) 

99	

64	
-	

35	




10’s Complement 
(subtract each digit from 9 and add 1 to the result) 

99	

64	
-	

35 + 1 = 36	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	

9’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


9’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


9’s complement	


10’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


9’s complement	


=  82 + 36 - 100  	


10’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


=  118 - 100  	


9’s complement	


=  82 + 36 - 100  	


10’s complement	


// Add the first two.	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


=  118 - 100  	


9’s complement	


=  82 + 36 - 100  	


=    18	


10’s complement	


// Add the first two.	


// Just delete the leading 1.	

// No need to subtract 100.	
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Formats for representation of integers 

[ Figure 3.7 from the textbook ]	




•  Sign and magnitude 

• 1’s complement 

• 2’s complement 

Negative numbers can be represented in following ways 



Let K be the negative equivalent of an n-bit positive number P. 
 
Then, in 1’s complement representation K is obtained by 
subtracting P from 2n – 1, namely 
 

   K = (2n – 1) –  P 

This means that K can be obtained by inverting all bits of P. 

1’s complement 



Find the 1’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 0 1 1	




Find the 1’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 0 1 1	


1 0 1 0	
 1 1 0 1	


1 0 0 0	
1 1 0 0	

Just flip 1's to 0's and vice versa.	




A) Example of 1’s complement addition 

+	

0 1 1 1	


0 1 0 1	

0 0 1 0	


5	
+	
(	
 )	

2	
+	
(	
 )	

7	
+	
(	
 )	


+	


[ Figure 3.8 from the textbook ]	




A) Example of 1’s complement addition 

+	

0 1 1 1	


0 1 0 1	

0 0 1 0	
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B) Example of 1’s complement addition 
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1 0 1 0	

0 0 1 0	
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[ Figure 3.8 from the textbook ]	




B) Example of 1’s complement addition 

+	

1 1 0 0	


1 0 1 0	

0 0 1 0	
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C) Example of 1’s complement addition 

+	

0 0 1 0	


0 1 0 1	

1 1 0 1	


1	
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+	
(	
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+	
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+	
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–	
(	
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[ Figure 3.8 from the textbook ]	




C) Example of 1’s complement addition 

+	

0 0 1 0	


0 1 0 1	

1 1 0 1	
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C) Example of 1’s complement addition 

+	

0 0 1 0	


0 1 0 1	

1 1 0 1	
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But this is 2!	




C) Example of 1’s complement addition 
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0 0 1 0	


0 1 0 1	

1 1 0 1	


1	
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We need to perform one 	

more addition to get the result.	




0 0 1 0	


C) Example of 1’s complement addition 
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0 1 0 1	

1 1 0 1	
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We need to perform one 	

more addition to get the result.	




D) Example of 1’s complement addition 

+	

0 1 1 1	


1 0 1 0	

1 1 0 1	


1	


5	
–	
(	
 )	


7	
–	
(	
 )	

+	
 2	
–	
(	
 )	


[ Figure 3.8 from the textbook ]	




D) Example of 1’s complement addition 

+	

0 1 1 1	


1 0 1 0	

1 1 0 1	


1	
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7	
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D) Example of 1’s complement addition 

+	

0 1 1 1	


1 0 1 0	

1 1 0 1	


1	


5	
–	
(	
 )	


7	
–	
(	
 )	

+	
 2	
–	
(	
 )	


But this is +7!	




D) Example of 1’s complement addition 

We need to perform one 	

more addition to get the result.	


+	

0 1 1 1	


1 0 1 0	

1 1 0 1	


1	

1	


1 0 0 0	


5	
–	
(	
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7	
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(	
 )	

+	
 2	
–	
(	
 )	




D) Example of 1’s complement addition 

We need to perform one 	

more addition to get the result.	


+	

0 1 1 1	


1 0 1 0	

1 1 0 1	


1	

1	


1 0 0 0	


5	
–	
(	
 )	


7	
–	
(	
 )	

+	
 2	
–	
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 )	




Let K be the negative equivalent of an n-bit positive number P. 
 
Then, in 2’s complement representation K is obtained by 
subtracting P from 2n , namely 
 

   K = 2n  –  P 

2’s complement 



For a positive n-bit number P, let K1 and K2 denote its 1’s 
and 2’s complements, respectively. 

K1 = (2n – 1) – P 
 

K2 = 2n – P 

Since K2 = K1 + 1, it is evident that in a logic circuit the 2’s 
complement can computed by inverting all bits of P and then 
adding 1 to the resulting 1’s-complement number. 

Deriving 2’s complement 



Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


1 0 1 0	


1 0 1 1	
 1 0 0 0	


1 1 0 1	


Invert all bits.	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


1 0 1 0	

 1	


1 0 1 1	

 +	


1 0 1 1	

 1	


1 1 0 0	

 +	
 1 0 0 0	


 1	

1 0 0 1	


 +	


1 1 0 1	

 1	


1 1 1 0	

 +	


Then add 1.	




Quick Way to find 2’s complement 

•  Scan the binary number from right to left 

•  Copy all bits that are 0 from right to left 

•  Stop at the first 1 

•  Copy that 1 as well 

•  Invert all remaining bits 



Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


.  .  .  .	


.  .  0 0	
 .  .  .  .	


.  .  .  0	


Copy all bits that are 0 from right to left.	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


.  .  .  1	


.  1 0 0	
 .  .  .  1	


.  .  1 0	


Stop at the first 1. Copy that 1 as well.	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


1 0 1 1	


1 1 0 0	
 1 0 0 1	


1 1 1 0	


Invert all remaining bits.	




[ Table 3.2 from the textbook ]	


Interpretation of four-bit signed integers 



Interpretation of four-bit signed integers 

Notice that in this representation there are two zeros!	




Interpretation of four-bit signed integers 

There are two zeros in this representation as well!	




Interpretation of four-bit signed integers 

In this representation there is one more negative number.	




The number circle for 2's complement 

[ Figure 3.11a from the textbook ]	




A) Example of 2’s complement addition 

[ Figure 3.9 from the textbook ]	
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B) Example of 2’s complement addition 
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1 0 1 1	
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[ Figure 3.9 from the textbook ]	




C) Example of 2’s complement addition 

+	
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1 1 1 0	


1	


ignore	


5	
+	
(	
 )	


3	
+	
(	
 )	

+	
 2	
–	
(	
 )	


[ Figure 3.9 from the textbook ]	




D) Example of 2’s complement addition 

+	
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1 0 1 1	

1 1 1 0	
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[ Figure 3.9 from the textbook ]	






Example of 2’s complement subtraction 

–	

0 1 0 1	

0 0 1 0	


5	
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0 0 1 1	


0 1 0 1	

1 1 1 0	


[ Figure 3.10 from the textbook ]	


means take the 2's complement	




Example of 2’s complement subtraction 

[ Figure 3.10 from the textbook ]	
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Example of 2’s complement subtraction 

[ Figure 3.10 from the textbook ]	


–	

0 1 0 1	

1 1 1 0	
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0 1 0 1	

0 0 1 0	
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 )	




Example of 2’s complement subtraction 

[ Figure 3.10 from the textbook ]	


–	

1 0 1 1	

1 1 1 0	
–	
 +	


1 1 0 1	


1 0 1 1	

0 0 1 0	
2	
–	
(	
 )	
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(	
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3	
–	
(	
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[ Figure 3.11 from the textbook ]	


Graphical interpretation of four-bit 2’s 
complement numbers 



Take-Home Message 

•  Subtraction can be performed by simply adding the 
2’s complement of the second number, regardless of 
the signs of the two numbers. 

•  Thus, the same adder circuit can be used to perform 
both addition and subtraction !!! 
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[ Figure 3.12 from the textbook ]	


Adder/subtractor unit 



XOR Tricks 
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[ Figure 3.12 from the textbook ]	


Addition: when control = 0 
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[ Figure 3.12 from the textbook ]	


Addition: when control = 0 
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[ Figure 3.12 from the textbook ]	


Addition: when control = 0 
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[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 
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[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 
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[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 
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[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 

1	


1	
1	
1	


yn-1	
 y1	
 y0	
…	


1	


carry for the 	

first column!	
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Examples of determination of overflow 

[ Figure 3.13 from the textbook ]	
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Include the carry bits:  c4 c3 c2 c1 c0	
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Overflow occurs only in these two cases.	
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XOR	




Calculating overflow for 4-bit numbers  
with only three significant bits 



Calculating overflow for n-bit numbers  
with only n-1 significant bits 



Another way to look at the overflow issue 



Another way to look at the overflow issue 

If  both numbers that we are adding have the same sign 	

but the sum does not, then we have an overflow.	




Questions? 



THE END 


