

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Fast Adders

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW5 is out
- It is due on Monday Oct 3 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please staple all of your pages together.

Administrative Stuff

- Labs Next Week
- Mini-Project
- This one is worth 3% of your grade.
- Make sure to get all the points.
- http://www.ece.iastate.edu/~alexs/classes/ 2016_Fall_281/labs/Project-Mini/

Quick Review

The problems in which row are easier to calculate?

The problems in which row are easier to calculate?

Why?

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100 \\
& =82+(99-64)+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

$$
=82+(100-64)-100
$$

$$
=82+(99+1-64)-100
$$

Does not require borrows

$$
=82+(99-64)+1-100
$$

9's Complement (subtract each digit from 9)

10's Complement

(subtract each digit from 9 and add 1 to the result)

Another Way to Do Subtraction

$$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

9's complement
 $$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =118-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+((99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =118-100 \quad \text { // Just deletet the leading } 1 . \\
& =18 \quad \text { // No need to subtract } 100 .
\end{aligned}
$$

2's complement

Let K be the negative equivalent of an n -bit positive number P .
Then, in 2' s complement representation K is obtained by subtracting P from $2^{\text {n }}$, namely

$$
K=2^{n}-P
$$

Deriving 2' s complement

For a positive n -bit number P , let K_{1} and K_{2} denote its 1' s and 2's complements, respectively.

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P} \\
& \mathrm{~K}_{2}=2^{\mathrm{n}}-\mathrm{P}
\end{aligned}
$$

Since $K_{2}=K_{1}+1$, it is evident that in a logic circuit the 2' s complement can computed by inverting all bits of P and then adding 1 to the resulting 1 ' s-complement number.

Find the 2's complement of ...

0101
 0010

0100
0111

Find the 2's complement of ...

0101
0010
1010
1101

0100
 1011

0111
1000

Invert all bits.

Find the 2's complement of ...

Then add 1.

Quick Way to find 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

Find the $\mathbf{2}$ ' s complement of ...

0101

0010

0100

0111

Find the $\mathbf{2}$ ' s complement of ...

0101
0010
. . . 0
0100
0111

Copy all bits that are 0 from right to left.

Find the $\mathbf{2}$ ' s complement of ...

0101
0010
. . . 1
. . 10
0100
0111
. 100
. . . 1

Stop at the first 1 . Copy that 1 as well.

Find the 2's complement of ...

0101
0010
1011
1110
0100
0111
1100
1001

Invert all remaining bits.

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

[Table 3.2 from the textbook]

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

The top half is the same in all three representations.
It corresponds to the positive integers.

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In all three representations the first bit represents the sign.
If that bit is 1 , then the number is negative.

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

Taking the 2's complement negates the number

decimal	$b_{3} b_{2} b_{1} b_{0}$	take the 2's complement	$b_{3} b_{2} b_{1} b_{0}$	decimal
+7	0111	\Longrightarrow	1001	-7
+6	0110	\Longrightarrow	1010	-6
+5	0101	\Longrightarrow	1011	-5
+4	0100	\Longrightarrow	1100	-4
+3	0011	\Longrightarrow	1101	-3
+2	0010	\Longrightarrow	1110	-2
+1	0001	\Longrightarrow	1111	-1
+0	0000	\Longrightarrow	0000	+0
-8	1000	\Longrightarrow	1000	-8
-7	1001	\Longrightarrow	0111	+7
-6	1010	\Longrightarrow	0110	+6
-5	1011	\Longrightarrow	0101	+5
-4	1100	\Longrightarrow	0100	+4
-3	1101	\Longrightarrow	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	\Longrightarrow	0001	+1

Taking the 2's complement negates the number

decimal	$b_{3} b_{2} b_{1} b_{0}$	take the 2's complement	$b_{3} b_{2} b_{1} b_{0}$	decimal	
+7	0111	\Longrightarrow	1001	-7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\rightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\Longrightarrow	1111	-1	
+0	0000	\Longrightarrow	0000	+0	This is
-8	1000	\Longrightarrow	1000	-8	the only
-7	1001	\Longrightarrow	0111	+7	exception
-6	1010	\Longrightarrow	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Rightarrow	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

The number circle for 2's complement

[Figure 3.11a from the textbook]

A) Example of 2's complement addition

$b_{3} b_{2} b_{1} b_{0}$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

B) Example of 2's complement addition

[Figure 3.9 from the textbook]

C) Example of 2's complement addition

		$b_{3} b_{2} b_{1} b_{0}$	2's complement
		0111	+7
		0110	+6
		0101	+5
(+5)	0101	0100	+4
+ (-2)	+ 1110	0011	+3
	10011	0010	+2
(+3)		0001	+1
	Δ	0000	+0
		1000	-8
	ignore	1001	-7
		1010	-6
		1011	-5
		1100	-4
		1101	-3
		1110	-2
		1111	-1

[Figure 3.9 from the textbook]

D) Example of 2's complement addition

[Figure 3.9 from the textbook]

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers
- algorithm for computing the 2's complement (regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number) take the 2's complement

Example of 2's complement subtraction

\Rightarrow means take the 2's complement
[Figure 3.10 from the textbook]

Graphical interpretation of four-bit 2's complement numbers

(a) The number circle
(b) Subtracting 2 by adding its 2's complement
[Figure 3.11 from the textbook]

Example of 2's complement subtraction

Example of 2's complement subtraction

$$
\begin{array}{r}
\begin{array}{r}
(+5) \\
-(-2)
\end{array} \\
\hline \begin{array}{l}
0101 \\
-1110
\end{array} \\
\hline+7)
\end{array} \quad \begin{array}{r}
0101 \\
+0010 \\
\hline 0111
\end{array}
$$

Example of 2's complement subtraction

(-5)	1011	1011
- (-2)	- 1110	+ 0010
(-3)		1101

Take Home Message

- Subtraction can be performed by simply adding the 2's complement of the second number, regardless of the signs of the two numbers.
- Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

[Figure 3.12 from the textbook]

XOR Tricks

control

XOR as a repeater

XOR as an inverter

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{l}
0111 \\
0010 \\
\hline 1001
\end{array} \\
& \begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
\hline 10101
\end{array}
\end{aligned}
$$

Examples of determination of overflow

01100
$(+7)$
$+(+2)$
$(+9)$
---:
0010
1001

00000
(-7)
$+\quad 1+2)$
(-5)
---:
1011

$$
\begin{array}{r}
11100 \\
+(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
\hline 10101
\end{array}
$$

$$
\begin{array}{r}
10000 \\
(-7) \\
+\quad 1001 \\
\hline(-9) \\
\hline 10111
\end{array}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

	01100
(+7)	0111
+ (+2)	0010
$(+9)$	1001

$$
\begin{array}{r}
+(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
1100 \\
\hline 10110 \\
\hline 10101
\end{array}
$$

$$
\begin{array}{r}
10000 \\
+(-7) \\
+\quad \begin{array}{r}
1001 \\
(-9) \\
\hline 10111
\end{array}
\end{array}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& c_{4}=0 \\
& c_{3}=1 \\
& \begin{array}{r}
00100 \\
(+7) \\
+(+2) \\
\hline(+9) \\
\hline \quad 0111 \\
\hline 1001
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c_{4}=0 \\
c_{3}=0
\end{array} \\
& \begin{array}{c}
c_{4}=1 \\
c_{3}=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
(-7) \\
+\quad 10000 \\
+(-2) \\
\hline(-9) \\
\hline 10111
\end{array} \\
& \begin{aligned}
c_{4} & =1 \\
c_{3} & =0
\end{aligned}
\end{aligned}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$\left.\begin{array}{r}c_{4}=0 \\ c_{3}=1\end{array}\right) \begin{array}{r}\begin{array}{r}011100 \\ (+7) \\ +(+2) \\ (+9) \\ 0111 \\ 0010 \\ \hline\end{array} \\ \begin{array}{r}1001\end{array} \\ \hline\end{array}$

$$
\begin{aligned}
& c_{4}=1 \\
& c_{3}=1
\end{aligned}
$$

Overflow occurs only in these two cases.

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{l}
c_{4}=1 \\
c_{3}=1
\end{array}
\end{aligned}
$$

$$
\text { Overflow }=\mathrm{c}_{3} \overline{\mathrm{c}}_{4}+\overline{\mathrm{c}}_{3} \mathrm{c}_{4}
$$

Examples of determination of overflow

$$
\text { Overflow }=\underbrace{c_{3} \bar{c}_{4}+\bar{c}_{3} c_{4}}_{\text {XOR }}
$$

Calculating overflow for 4-bit numbers with only three significant bits

$$
\begin{aligned}
\text { Overflow } & =c_{3} \bar{c}_{4}+\bar{c}_{3} c_{4} \\
& =c_{3} \oplus c_{4}
\end{aligned}
$$

Calculating overflow for n-bit numbers with only $\mathrm{n}-1$ significant bits

$$
\text { Overflow }=c_{n-1} \oplus c_{n}
$$

Detecting Overflow

Detecting Overflow (with one extra XOR)

Another way to look at the overflow issue

$$
+\begin{array}{rllll}
\mathrm{X}= & \mathrm{x}_{3} & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
\mathrm{Y}= & \mathrm{y}_{3} & \mathrm{y}_{2} & \mathrm{Y}_{1} & \mathrm{y}_{0}
\end{array} \quad \begin{array}{llllll}
\mathrm{S} & \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0}
\end{array}
$$

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{r}
0111 \\
0010 \\
\hline 1001
\end{array} \\
& \begin{array}{r}
(-7) \\
+(+2) \\
\hline(-5)
\end{array}+\quad \begin{array}{r}
1001 \\
\end{array} \begin{array}{l}
0010 \\
\hline 1011
\end{array} \\
& \begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
\hline 10101
\end{array} \\
& \begin{array}{r}
(-7) \\
+\quad \begin{array}{r}
1001 \\
(-2)
\end{array}+\quad 1110 \\
\hline 10111
\end{array}
\end{aligned}
$$

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
\begin{array}{l}
(+7) \\
+(+2)
\end{array} \\
\hline(+9)
\end{array}+\begin{array}{lllll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline & 1 & 0 & 0 & 1
\end{array} \\
& \begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array}+\begin{array}{lllll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(-2) \\
\hline(-9)
\end{array}+\begin{array}{r|lll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 1
\end{array}
\end{aligned}
$$

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& \begin{array}{ll}
y_{3}=0 \\
s_{3}=1
\end{array} \quad \begin{array}{r}
(+7) \\
+(+2)
\end{array}+\begin{array}{|l|lll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1
\end{array} \\
& \begin{array}{ll}
x_{3}=0 \\
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{l}
(+7) \\
\\
\hline(+5)
\end{array} \quad+\begin{array}{r|rll}
0 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1
\end{array} \\
& \begin{array}{ll}
x_{3}=0 \\
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{l}
(+7) \\
\\
\hline(+5)
\end{array} \quad+\begin{array}{r|rll}
0 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(-2) \\
\hline(-9)
\end{array}+\begin{array}{r|lll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 1
\end{array} \\
& x_{3}=1 \\
& \begin{array}{r}
(-7) \\
+(+2) \\
\hline(-5)
\end{array}+\begin{array}{|l|lll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\hline & 1 & 0 & 1
\end{array} \\
& \begin{array}{l}
y_{3}=0 \\
s_{3}=1
\end{array} \\
& x_{3}=1 \\
& y_{3}=1 \\
& s_{3}=0
\end{aligned}
$$

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& \left.\begin{array}{l}
\begin{array}{l}
y_{3}=0 \\
s_{3}=1
\end{array} \quad \begin{array}{r}
(+7) \\
+(+2)
\end{array}+\begin{array}{|l|lll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline(+9)
\end{array} \\
\hline 1
\end{array} \right\rvert\, \begin{array}{lll}
& 0 & 1
\end{array} \\
& x_{3}=0 \\
& \begin{array}{lll|l|ll}
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{l}
(+7) \\
+(-2)
\end{array} \quad+\begin{array}{rl|l}
0 & 1 & 1 \\
1 & 1 & 1 \\
\hline(+5)
\end{array} \quad \begin{array}{lllll}
1 & 0 & 1 & 0 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=1 \\
& \begin{array}{l}
y_{3}=1 \\
s_{3}=0
\end{array}
\end{aligned}
$$

In 2's complement, both +9 and -9 are not representable with 4 bits.

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{l}
x_{3}=0 \\
y_{3}=0 \\
s_{3}=1
\end{array} \quad \begin{array}{r}
(+7) \\
+(+2)
\end{array}+\begin{array}{|l|l|ll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline(+2) & 0 & 0 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(+2) \\
\hline(-5) \\
+\begin{array}{lllll}
1 & 0 & 0 & x_{3}=1 \\
0 & 0 & 1 & 0 \\
y_{3}=0
\end{array} \\
\hline
\end{array} \\
& x_{3}=0 \\
& \begin{array}{ll}
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{r}
(+7) \\
+(-2)
\end{array} \quad+\begin{array}{lllll}
0 & 1 & 1 & 1 \\
(+5)
\end{array} \quad 1 \begin{array}{ll}
1 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(-2)
\end{array}+\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array} \quad \begin{array}{l}
x_{3}=1 \\
y_{3}= \\
s_{3}= \\
\hline
\end{array}
\end{aligned}
$$

Overflow occurs only in these two cases.

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& \begin{array}{lr}
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{r}
(+7) \\
+(+5)
\end{array}+\begin{array}{|llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
\hline & 1 & 0 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(-2) \\
\hline(-9)
\end{array}+\begin{array}{|l|lll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array} \\
& x_{3}=1 \\
& y_{3}=1 \\
& s_{3}=0 \\
& \text { Overflow }=\bar{x}_{3} \bar{y}_{3} \mathrm{~s}_{3}+\mathrm{x}_{3} \mathrm{y}_{3} \overline{\mathrm{~s}}_{3}
\end{aligned}
$$

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

$$
\text { Overflow }=\bar{x}_{3} \bar{y}_{3} \mathrm{~s}_{3}+\mathrm{x}_{3} \mathrm{y}_{3} \overline{\mathrm{~s}}_{3}
$$

How long does it take to compute all sum bits and all carry bits?

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the previous stage will be equal to 0 or 1 .

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

Decomposing the Carry Expression

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

Another Way to Draw the Full-Adder Circuit

$$
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Another Way to Draw the Full-Adder Circuit

g - generate
p-propagate

$$
c_{i+1}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Yet Another Way to Draw It (Just Rotate It)

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

The delay is $\mathbf{5}$ gates ($\mathbf{1 + 2 + 2)}$

n-bit ripple-carry adder: 2n+1 gate delays

Decomposing the Carry Expression

$$
\begin{aligned}
c_{i+1} & =x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
c_{i+1} & =\underbrace{x_{i} y_{i}}_{g_{i}}+\underbrace{\left(x_{i}+y_{i}\right.}_{p_{i}}) c_{i} \\
c_{i+1} & =g_{i}+p_{i} c_{i} \\
c_{i+1} & =g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
& =g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} c_{i-1}
\end{aligned}
$$

Carry for the first two stages

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

It takes $\mathbf{3}$ gate delays to generate $\mathbf{c}_{\mathbf{1}}$

It takes $\mathbf{3}$ gate delays to generate $\mathbf{c}_{\mathbf{2}}$

The first two stages of a carry-lookahead adder

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{1}}$

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{2}}$

N-bit Carry-Lookahead Adder

- It takes $\mathbf{3}$ gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits
- Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

$$
\begin{aligned}
c_{i+1}= & g_{i}+p_{i} c_{i} \\
c_{1}= & g_{0}+p_{0} c_{0} \\
c_{2}= & g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
c_{3}= & g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
\cdots & \\
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

Expanding the Carry Expression

$$
\begin{aligned}
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
& \cdots \\
& c_{8}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}
\end{aligned}
$$

Even this takes $+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}$ $\stackrel{\text { only } 3 \text { gate delays }}{ }+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{9}$ $+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}$

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7}{ }_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
& c_{8}= g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
&+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
&+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
&+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{9} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

The Hierarchical Carry Expression

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \\
c_{24} & =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0} \\
c_{32} & =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
\end{aligned}
$$

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

Hierarchical
 CLA Adder Carry Logic

SECOND
LEVEL HIERARCHY

C8 - 5 gate delays
C16-5 gate delays
C24-5 Gate delays
C32-5 Gate delays

FIRST LEVEL HIERARCHY

Hierarchical CLA

 Critical PathSECOND
LEVEL HIERARCHY

C9 - 7 gate delays
C17-7 gate delays
C25-7 Gate delays

FIRST LEVEL HIERARCHY

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- Is 8 gates
- 3 to generate all Gj and Pj
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Questions?

THE END

