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Administrative Stuff 
•  HW5 is out 

•  It is due on Monday Oct 3 @ 4pm. 

•  Please write clearly on the first page (in block 
capital letters) the following three things: 

§  Your First and Last Name 
§  Your Student ID Number 
§  Your Lab Section Letter 

•  Also, please staple all of your pages together. 
 



Administrative Stuff 
•  Labs Next Week 

•  Mini-Project 

•  This one is worth 3% of your grade. 

•  Make sure to get all the points. 

•  http://www.ece.iastate.edu/~alexs/classes/
2016_Fall_281/labs/Project-Mini/ 



Quick Review 



The problems in which row are easier to calculate? 

82	

64	
-	

??	


48	

29	
-	

??	


32	

13	
-	

??	


82	

61	
-	

??	


48	

26	
-	

??	


32	

11	
-	

??	




The problems in which row are easier to calculate? 

82	

64	
-	

18	


48	

29	
-	

19	


32	

13	
-	

19	


82	

61	
-	

21	


48	

26	
-	

22	


32	

11	
-	

21	


Why?	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	


=  82 + (99 + 1 – 64) - 100  	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	


=  82 + (99 + 1 – 64) - 100  	


=  82 + (99 – 64) +1 - 100  	




Another Way to Do Subtraction 

82 – 64 =  82 + 100 – 100 - 64 	


=  82 + (100 – 64) - 100  	


=  82 + (99 + 1 – 64) - 100  	


=  82 + (99 – 64) +1 - 100  	

Does not require borrows	




9’s Complement 
(subtract each digit from 9) 

99	

64	
-	

35	




10’s Complement 
(subtract each digit from 9 and add 1 to the result) 

99	

64	
-	

35 + 1 = 36	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	

9’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


9’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


9’s complement	


10’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


9’s complement	


=  82 + 36 - 100  	


10’s complement	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


=  118 - 100  	


9’s complement	


=  82 + 36 - 100  	


10’s complement	


// Add the first two.	




Another Way to Do Subtraction 

82 – 64 =  82 + (99 – 64) +1 - 100    	


=  82 + 35 + 1 - 100  	


=  118 - 100  	


9’s complement	


=  82 + 36 - 100  	


=    18	


10’s complement	


// Add the first two.	


// Just delete the leading 1.	

// No need to subtract 100.	






Let K be the negative equivalent of an n-bit positive number P. 
 
Then, in 2’s complement representation K is obtained by 
subtracting P from 2n , namely 
 

   K = 2n  –  P 

2’s complement 



For a positive n-bit number P, let K1 and K2 denote its 1’s 
and 2’s complements, respectively. 

K1 = (2n – 1) – P 
 

K2 = 2n – P 

Since K2 = K1 + 1, it is evident that in a logic circuit the 2’s 
complement can computed by inverting all bits of P and then 
adding 1 to the resulting 1’s-complement number. 

Deriving 2’s complement 



Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


1 0 1 0	


1 0 1 1	
 1 0 0 0	


1 1 0 1	


Invert all bits.	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


1 0 1 0	

 1	


1 0 1 1	

 +	


1 0 1 1	

 1	


1 1 0 0	

 +	
 1 0 0 0	


 1	

1 0 0 1	


 +	


1 1 0 1	

 1	


1 1 1 0	

 +	


Then add 1.	




Quick Way to find 2’s complement 

•  Scan the binary number from right to left 

•  Copy all bits that are 0 from right to left 

•  Stop at the first 1 

•  Copy that 1 as well 

•  Invert all remaining bits 



Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


.  .  .  .	


.  .  0 0	
 .  .  .  .	


.  .  .  0	


Copy all bits that are 0 from right to left.	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


.  .  .  1	


.  1 0 0	
 .  .  .  1	


.  .  1 0	


Stop at the first 1. Copy that 1 as well.	




Find the 2’s complement of … 

0 1 0 1	
 0 0 1 0	


0 1 1 1	
0 1 0 0	


1 0 1 1	


1 1 0 0	
 1 0 0 1	


1 1 1 0	


Invert all remaining bits.	




[ Table 3.2 from the textbook ]	


Interpretation of four-bit signed integers 



Interpretation of four-bit signed integers 

The top half is the same in all three representations.	

It corresponds to the positive integers.	




Interpretation of four-bit signed integers 

In all three representations the first bit represents the sign.	

If that bit is 1, then the number is negative.	




Interpretation of four-bit signed integers 

Notice that in this representation there are two zeros!	




Interpretation of four-bit signed integers 

There are two zeros in this representation as well!	




Interpretation of four-bit signed integers 

In this representation there is one more negative number.	




decimal b3 b2 b1 b0 take the 2's 
complement 

b3 b2 b1 b0 decimal 

+7! 0111! 1001! -7!

+6! 0110! 1010! -6!

+5! 0101! 1011! -5!

+4! 0100! 1100! -4!

+3! 0011! 1101! -3!

+2! 0010! 1110! -2!

+1! 0001! 1111! -1!

+0! 0000! 0000! +0!

-8! 1000! 1000! -8!

-7! 1001! 0111! +7!

-6! 1010! 0110! +6!

-5! 1011! 0101! +5!

-4! 1100! 0100! +4!

-3! 1101! 0011! +3!

-2! 1110! 0010! +2!

-1! 1111! 0001! +1!

Taking the 2’s complement negates the number 



decimal b3 b2 b1 b0 take the 2's 
complement 

b3 b2 b1 b0 decimal 

+7! 0111! 1001! -7!

+6! 0110! 1010! -6!

+5! 0101! 1011! -5!

+4! 0100! 1100! -4!

+3! 0011! 1101! -3!

+2! 0010! 1110! -2!

+1! 0001! 1111! -1!

+0! 0000! 0000! +0!

-8! 1000! 1000! -8!

-7! 1001! 0111! +7!

-6! 1010! 0110! +6!

-5! 1011! 0101! +5!

-4! 1100! 0100! +4!

-3! 1101! 0011! +3!

-2! 1110! 0010! +2!

-1! 1111! 0001! +1!

Taking the 2’s complement negates the number 

This is	

the only	

exception	




The number circle for 2's complement 

[ Figure 3.11a from the textbook ]	




A) Example of 2’s complement addition 

[ Figure 3.9 from the textbook ]	


+	

0 1 1 1	


0 1 0 1	

0 0 1 0	


5	
+	
(	
 )	

2	
+	
(	
 )	

7	
+	
(	
 )	


+	




B) Example of 2’s complement addition 

+	

1 1 0 1	


1 0 1 1	

0 0 1 0	
2	
+	
(	
 )	


5	
–	
(	
 )	


3	
–	
(	
 )	

+	


[ Figure 3.9 from the textbook ]	




C) Example of 2’s complement addition 

+	

0 0 1 1	


0 1 0 1	

1 1 1 0	


1	


ignore	


5	
+	
(	
 )	


3	
+	
(	
 )	

+	
 2	
–	
(	
 )	


[ Figure 3.9 from the textbook ]	




D) Example of 2’s complement addition 

+	

1 0 0 1	


1 0 1 1	

1 1 1 0	


1	


ignore	


5	
–	
(	
 )	


7	
–	
(	
 )	

+	
 2	
–	
(	
 )	


[ Figure 3.9 from the textbook ]	






Naming Ambiguity: 2's Complement 

2's complement has two different meanings: 

•  representation for signed integer numbers 

•  algorithm for computing the 2's complement 
(regardless of the representation of the number) 



Naming Ambiguity: 2's Complement 

2's complement has two different meanings: 

•  representation for signed integer numbers 
 in 2's complement 

•  algorithm for computing the 2's complement 
(regardless of the representation of the number) 

 take the 2's complement 



Example of 2’s complement subtraction 

–	

0 1 0 1	

0 0 1 0	


5	
+	
(	
 )	

2	
+	
(	
 )	

3	
+	
(	
 )	


–	

1	


ignore	


+	

0 0 1 1	


0 1 0 1	

1 1 1 0	


[ Figure 3.10 from the textbook ]	


means take the 2's complement	




[ Figure 3.11 from the textbook ]	


Graphical interpretation of four-bit  
2’s complement numbers 



Example of 2’s complement subtraction 

[ Figure 3.10 from the textbook ]	


–	

1 0 1 1	

0 0 1 0	
–	


1	


ignore	


+	

1 0 0 1	


1 0 1 1	

1 1 1 0	


5	
–	
(	
 )	


7	
–	
(	
 )	

2	
+	
(	
 )	




Example of 2’s complement subtraction 

[ Figure 3.10 from the textbook ]	


–	

0 1 0 1	

1 1 1 0	


5	
+	
(	
 )	


7	
+	
(	
 )	

–	
 +	


0 1 1 1	


0 1 0 1	

0 0 1 0	
2	
–	
(	
 )	




Example of 2’s complement subtraction 

[ Figure 3.10 from the textbook ]	


–	

1 0 1 1	

1 1 1 0	
–	
 +	


1 1 0 1	


1 0 1 1	

0 0 1 0	
2	
–	
(	
 )	


5	
–	
(	
 )	


3	
–	
(	
 )	




Take Home Message 

•  Subtraction can be performed by simply adding the 
2’s complement of the second number, regardless of 
the signs of the two numbers. 

•  Thus, the same adder circuit can be used to perform 
both addition and subtraction !!! 



s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Adder/subtractor unit 



XOR Tricks 

y	


control	

out	




y	


0	

y	


XOR as a repeater 



y	


1	

y	


XOR as an inverter 



s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Addition: when control = 0 



s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Addition: when control = 0 

0	


0	
0	
0	




s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Addition: when control = 0 

0	


0	
0	
0	


yn-1	
 y1	
 y0	
…	




s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 



s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 

1	


1	
1	
1	




s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 

1	


1	
1	
1	


yn-1	
 y1	
 y0	
…	




s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	


x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	


c 	
n 	
 n 	
-bit adder	


y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	


c 	
0 	


Add 	
⁄ 	
Sub 	

control 	


[ Figure 3.12 from the textbook ]	


Subtraction: when control = 1 

1	


1	
1	
1	


yn-1	
 y1	
 y0	
…	


1	


carry for the 	

first column!	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	


7	
+	
(	
 )	

2	
+	
(	
 )	

9	
+	
(	
 )	


+	


+	
+	


0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	

1 1 1 0	


7	
+	
(	
 )	


5	
+	
(	
 )	

+	
 2	
–	
(	
 )	


1	
1	


2	
+	
(	
 )	

7	
–	
(	
 )	


5	
–	
(	
 )	

+	


7	
–	
(	
 )	


9	
–	
(	
 )	

+	
 2	
–	
(	
 )	


Examples of determination of overflow 

[ Figure 3.13 from the textbook ]	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	


7	
+	
(	
 )	

2	
+	
(	
 )	

9	
+	
(	
 )	


+	


+	
+	


0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	

1 1 1 0	


7	
+	
(	
 )	


5	
+	
(	
 )	

+	
 2	
–	
(	
 )	


1	
1	


2	
+	
(	
 )	

7	
–	
(	
 )	


5	
–	
(	
 )	

+	


7	
–	
(	
 )	


9	
–	
(	
 )	

+	
 2	
–	
(	
 )	


Examples of determination of overflow 

0 1 1 0 0	
 0 0 0 0 0	


1 0 0 0 0	
1 1 1 0 0	


Include the carry bits:  c4 c3 c2 c1 c0	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	


7	
+	
(	
 )	

2	
+	
(	
 )	

9	
+	
(	
 )	


+	


+	
+	


0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	

1 1 1 0	


7	
+	
(	
 )	


5	
+	
(	
 )	

+	
 2	
–	
(	
 )	


1	
1	


2	
+	
(	
 )	

7	
–	
(	
 )	


5	
–	
(	
 )	

+	


7	
–	
(	
 )	


9	
–	
(	
 )	

+	
 2	
–	
(	
 )	


Examples of determination of overflow 

0 1 1 0 0	
 0 0 0 0 0	


1 0 0 0 0	
1 1 1 0 0	


Include the carry bits:  c4 c3 c2 c1 c0	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	


7	
+	
(	
 )	

2	
+	
(	
 )	

9	
+	
(	
 )	


+	


+	
+	


0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	

1 1 1 0	


7	
+	
(	
 )	


5	
+	
(	
 )	

+	
 2	
–	
(	
 )	


1	
1	


2	
+	
(	
 )	

7	
–	
(	
 )	


5	
–	
(	
 )	

+	


7	
–	
(	
 )	


9	
–	
(	
 )	

+	
 2	
–	
(	
 )	


Examples of determination of overflow 

0 1 1 0 0	
 0 0 0 0 0	


1 0 0 0 0	
1 1 1 0 0	


Include the carry bits:  c4 c3 c2 c1 c0	


c	
4	
 0	
=	

c	
3	
 1	
=	


c	
4	
 1	
=	

c	
3	
 1	
=	


c	
4	
 0	
=	

c	
3	
 0	
=	


c	
4	
 1	
=	

c	
3	
 0	
=	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	


7	
+	
(	
 )	

2	
+	
(	
 )	

9	
+	
(	
 )	


+	


+	
+	


0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	

1 1 1 0	


7	
+	
(	
 )	


5	
+	
(	
 )	

+	
 2	
–	
(	
 )	


1	
1	


2	
+	
(	
 )	

7	
–	
(	
 )	


5	
–	
(	
 )	

+	


7	
–	
(	
 )	


9	
–	
(	
 )	

+	
 2	
–	
(	
 )	


Examples of determination of overflow 

0 1 1 0 0	
 0 0 0 0 0	


1 0 0 0 0	
1 1 1 0 0	


Overflow occurs only in these two cases.	


c	
4	
 0	
=	

c	
3	
 1	
=	


c	
4	
 1	
=	

c	
3	
 1	
=	


c	
4	
 0	
=	

c	
3	
 0	
=	


c	
4	
 1	
=	

c	
3	
 0	
=	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	


7	
+	
(	
 )	

2	
+	
(	
 )	

9	
+	
(	
 )	


+	


+	
+	


0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	

1 1 1 0	


7	
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(	
 )	


5	
+	
(	
 )	

+	
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1	
1	


2	
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 )	
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–	
(	
 )	

+	
 2	
–	
(	
 )	


Examples of determination of overflow 

0 1 1 0 0	
 0 0 0 0 0	


1 0 0 0 0	
1 1 1 0 0	


c	
4	
 0	
=	

c	
3	
 1	
=	


c	
4	
 1	
=	

c	
3	
 1	
=	


c	
4	
 0	
=	

c	
3	
 0	
=	


c	
4	
 1	
=	

c	
3	
 0	
=	


Overflow = c3c4  + c3c4	




+	
+	


1 0 1 1	


1 0 0 1	

0 0 1 0	


1 0 0 1	


0 1 1 1	

0 0 1 0	
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(	
 )	
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+	
(	
 )	

9	
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(	
 )	


+	


+	
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0 1 1 1	


1 0 0 1	

1 1 1 0	


0 1 0 1	


0 1 1 1	
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+	


7	
–	
(	
 )	


9	
–	
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Examples of determination of overflow 

0 1 1 0 0	
 0 0 0 0 0	


1 0 0 0 0	
1 1 1 0 0	


c	
4	
 0	
=	

c	
3	
 1	
=	


c	
4	
 1	
=	

c	
3	
 1	
=	


c	
4	
 0	
=	

c	
3	
 0	
=	


c	
4	
 1	
=	

c	
3	
 0	
=	


Overflow = c3c4  + c3c4	


XOR	




Calculating overflow for 4-bit numbers  
with only three significant bits 



Calculating overflow for n-bit numbers  
with only n-1 significant bits 



FA	


x 	
n –	
1 	


c 	
n 	
 c 	
n 	
 1 	
” 	


y 	
n 	
 1 	
– 	


s 	
n 	
 1 	
– 	


FA	


x 	
1 	


c 	
2 	


y 	
1 	


s 	
1 	


FA	

c 	
1 	


x 	
0 	
 y 	
0 	


s 	
0 	


c 	
0 	


Detecting Overflow 



FA	


x 	
n –	
1 	


c 	
n 	
 c 	
n 	
 1 	
” 	


y 	
n 	
 1 	
– 	


s 	
n 	
 1 	
– 	


FA	


x 	
1 	


c 	
2 	


y 	
1 	


s 	
1 	


FA	

c 	
1 	


x 	
0 	
 y 	
0 	


s 	
0 	


c 	
0 	


Detecting Overflow 
(with one extra XOR) 

overflow	




X= x3 x2 x1 x0!
Y= y3 y2 y1 y0!

!
 S= s3 s2 s1 s0!

!

+	


Another way to look at the overflow issue 
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Another way to look at the overflow issue 

If  both numbers that we are adding have the same sign 	

but the sum does not, then we have an overflow.	
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In 2's complement, both +9 and -9 are not representable with 4 bits.	
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Overflow occurs only in these two cases.	
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Overflow = x3 y3 s3 + x3 y3 s3	




X= x3 x2 x1 x0!
Y= y3 y2 y1 y0!

!
 S= s3 s2 s1 s0!

!

+	


Another way to look at the overflow issue 

If  both numbers that we are adding have the same sign 	

but the sum does not, then we have an overflow.	


Overflow = x3 y3 s3 + x3 y3 s3	
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How long does it take to compute all 
sum bits and all carry bits? 



Can we perform addition even faster? 

 
 
The goal is to evaluate very fast if the carry from the 
previous stage will be equal to 0 or 1. 



The Full-Adder Circuit 

[ Figure 3.3c from the textbook ]	




The Full-Adder Circuit 

[ Figure 3.3c from the textbook ]	


Let's take a closer look at this.	




Decomposing the Carry Expression 

ci+1 = xi yi + xi ci + yi ci	




Decomposing the Carry Expression 

ci+1 = xi yi + xi ci + yi ci	


ci+1 = xi yi + (xi + yi )ci	




Decomposing the Carry Expression 
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Another Way to Draw the Full-Adder Circuit 
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Another Way to Draw the Full-Adder Circuit 
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Another Way to Draw the Full-Adder Circuit 

ci+1 = xi yi + (xi + yi )ci	
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g - generate	
 p - propagate	




Yet Another Way to Draw It (Just Rotate It) 
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Now we can Build a Ripple-Carry Adder 

[ Figure 3.14 from the textbook ]	
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Now we can Build a Ripple-Carry Adder 

[ Figure 3.14 from the textbook ]	
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The delay is 5 gates (1+2+2) 
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n-bit ripple-carry adder: 2n+1 gate delays 

. . . 	




Decomposing the Carry Expression 

ci+1 = xi yi + xi ci + yi ci	


ci+1 = xi yi + (xi + yi )ci	

gi	
 pi	


ci+1 = gi  + pi ci	


ci+1 = gi  + pi (gi-1  + pi-1 ci-1 )	


      = gi  + pi gi-1  + pi pi-1 ci-1	




Carry for the first two stages 

c1  =  g0  + p0 c0	


c2  =  g1  + p1g0 + p1p0c0	
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The first two stages of a carry-lookahead adder 

[ Figure 3.15 from the textbook ]	
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It takes 3 gate delays to generate c1 
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It takes 3 gate delays to generate c2 
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The first two stages of a carry-lookahead adder 
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It takes 4 gate delays to generate s1 
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It takes 4 gate delays to generate s2 
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N-bit Carry-Lookahead Adder 

•  It takes 3 gate delays to generate all carry signals 

•  It takes 1 more gate delay to generate all sum bits 

•  Thus, the total delay through an n-bit             
carry-lookahead adder is only 4 gate delays! 



Expanding the Carry Expression 
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Even this takes 	

only 3 gate delays 	
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A hierarchical carry-lookahead adder with  
ripple-carry between blocks 

[ Figure 3.16 from the textbook ]	
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[ Figure 3.17 from the textbook ]	


A hierarchical carry-lookahead adder 
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The Hierarchical Carry Expression 
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The Hierarchical Carry Expression 
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c16  =  G1  + P1 c8	
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[ Figure 3.17 from the textbook ]	


A hierarchical carry-lookahead adder 
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C8   – 5 gate delays ���
C16 – 5 gate delays ���
C24 – 5 Gate delays ���
C32 – 5 Gate delays 	
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 C9   – 7 gate delays ���

C17 – 7 gate delays ���
C25 – 7 Gate delays	




Total Gate Delay Through a  
Hierarchical Carry-Lookahead Adder  

 
 
 

 

•  Is 8 gates 
§  3 to generate all Gj and Pj 
§  +2 to generate c8, c16, c24, and c32 
§  +2 to generate internal carries in the blocks 
§  +1 to generate the sum bits (one extra XOR)  



Questions? 



THE END 


