
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Fast Adders

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff
•  HW5 is out

•  It is due on Monday Oct 3 @ 4pm.

•  Please write clearly on the first page (in block
capital letters) the following three things:

§  Your First and Last Name
§  Your Student ID Number
§  Your Lab Section Letter

•  Also, please staple all of your pages together.

Administrative Stuff
•  Labs Next Week

•  Mini-Project

•  This one is worth 3% of your grade.

•  Make sure to get all the points.

•  http://www.ece.iastate.edu/~alexs/classes/
2016_Fall_281/labs/Project-Mini/

Quick Review

The problems in which row are easier to calculate?

82	

64	
-	

??	

48	

29	
-	

??	

32	

13	
-	

??	

82	

61	
-	

??	

48	

26	
-	

??	

32	

11	
-	

??	

The problems in which row are easier to calculate?

82	

64	
-	

18	

48	

29	
-	

19	

32	

13	
-	

19	

82	

61	
-	

21	

48	

26	
-	

22	

32	

11	
-	

21	

Why?	

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64 	

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64 	

= 82 + (100 – 64) - 100 	

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64 	

= 82 + (100 – 64) - 100 	

= 82 + (99 + 1 – 64) - 100 	

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64 	

= 82 + (100 – 64) - 100 	

= 82 + (99 + 1 – 64) - 100 	

= 82 + (99 – 64) +1 - 100 	

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64 	

= 82 + (100 – 64) - 100 	

= 82 + (99 + 1 – 64) - 100 	

= 82 + (99 – 64) +1 - 100 	

Does not require borrows	

9’s Complement
(subtract each digit from 9)

99	

64	
-	

35	

10’s Complement
(subtract each digit from 9 and add 1 to the result)

99	

64	
-	

35 + 1 = 36	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

9’s complement	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

= 82 + 35 + 1 - 100 	

9’s complement	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

= 82 + 35 + 1 - 100 	

9’s complement	

10’s complement	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

= 82 + 35 + 1 - 100 	

9’s complement	

= 82 + 36 - 100 	

10’s complement	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

= 82 + 35 + 1 - 100 	

= 118 - 100 	

9’s complement	

= 82 + 36 - 100 	

10’s complement	

// Add the first two.	

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100 	

= 82 + 35 + 1 - 100 	

= 118 - 100 	

9’s complement	

= 82 + 36 - 100 	

= 18	

10’s complement	

// Add the first two.	

// Just delete the leading 1.	

// No need to subtract 100.	

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2’s complement representation K is obtained by
subtracting P from 2n , namely

 K = 2n – P

2’s complement

For a positive n-bit number P, let K1 and K2 denote its 1’s
and 2’s complements, respectively.

K1 = (2n – 1) – P

K2 = 2n – P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2’s
complement can computed by inverting all bits of P and then
adding 1 to the resulting 1’s-complement number.

Deriving 2’s complement

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

1 0 1 0	

1 0 1 1	
 1 0 0 0	

1 1 0 1	

Invert all bits.	

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

1 0 1 0	

 1	

1 0 1 1	

 +	

1 0 1 1	

 1	

1 1 0 0	

 +	
 1 0 0 0	

 1	

1 0 0 1	

 +	

1 1 0 1	

 1	

1 1 1 0	

 +	

Then add 1.	

Quick Way to find 2’s complement

•  Scan the binary number from right to left

•  Copy all bits that are 0 from right to left

•  Stop at the first 1

•  Copy that 1 as well

•  Invert all remaining bits

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

. . . .	

. . 0 0	
	

. . . 0	

Copy all bits that are 0 from right to left.	

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

. . . 1	

. 1 0 0	
 . . . 1	

. . 1 0	

Stop at the first 1. Copy that 1 as well.	

Find the 2’s complement of …

0 1 0 1	
 0 0 1 0	

0 1 1 1	
0 1 0 0	

1 0 1 1	

1 1 0 0	
 1 0 0 1	

1 1 1 0	

Invert all remaining bits.	

[Table 3.2 from the textbook]	

Interpretation of four-bit signed integers

Interpretation of four-bit signed integers

The top half is the same in all three representations.	

It corresponds to the positive integers.	

Interpretation of four-bit signed integers

In all three representations the first bit represents the sign.	

If that bit is 1, then the number is negative.	

Interpretation of four-bit signed integers

Notice that in this representation there are two zeros!	

Interpretation of four-bit signed integers

There are two zeros in this representation as well!	

Interpretation of four-bit signed integers

In this representation there is one more negative number.	

decimal b3 b2 b1 b0 take the 2's
complement

b3 b2 b1 b0 decimal

+7! 0111! 1001! -7!

+6! 0110! 1010! -6!

+5! 0101! 1011! -5!

+4! 0100! 1100! -4!

+3! 0011! 1101! -3!

+2! 0010! 1110! -2!

+1! 0001! 1111! -1!

+0! 0000! 0000! +0!

-8! 1000! 1000! -8!

-7! 1001! 0111! +7!

-6! 1010! 0110! +6!

-5! 1011! 0101! +5!

-4! 1100! 0100! +4!

-3! 1101! 0011! +3!

-2! 1110! 0010! +2!

-1! 1111! 0001! +1!

Taking the 2’s complement negates the number

decimal b3 b2 b1 b0 take the 2's
complement

b3 b2 b1 b0 decimal

+7! 0111! 1001! -7!

+6! 0110! 1010! -6!

+5! 0101! 1011! -5!

+4! 0100! 1100! -4!

+3! 0011! 1101! -3!

+2! 0010! 1110! -2!

+1! 0001! 1111! -1!

+0! 0000! 0000! +0!

-8! 1000! 1000! -8!

-7! 1001! 0111! +7!

-6! 1010! 0110! +6!

-5! 1011! 0101! +5!

-4! 1100! 0100! +4!

-3! 1101! 0011! +3!

-2! 1110! 0010! +2!

-1! 1111! 0001! +1!

Taking the 2’s complement negates the number

This is	

the only	

exception	

The number circle for 2's complement

[Figure 3.11a from the textbook]	

A) Example of 2’s complement addition

[Figure 3.9 from the textbook]	

+	

0 1 1 1	

0 1 0 1	

0 0 1 0	

5	
+	
(
)	

2	
+	
(
)	

7	
+	
(
)	

+	

B) Example of 2’s complement addition

+	

1 1 0 1	

1 0 1 1	

0 0 1 0	
2	
+	
(
)	

5	
–	
(
)	

3	
–	
(
)	

+	

[Figure 3.9 from the textbook]	

C) Example of 2’s complement addition

+	

0 0 1 1	

0 1 0 1	

1 1 1 0	

1	

ignore	

5	
+	
(
)	

3	
+	
(
)	

+	
 2	
–	
(
)	

[Figure 3.9 from the textbook]	

D) Example of 2’s complement addition

+	

1 0 0 1	

1 0 1 1	

1 1 1 0	

1	

ignore	

5	
–	
(
)	

7	
–	
(
)	

+	
 2	
–	
(
)	

[Figure 3.9 from the textbook]	

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

•  representation for signed integer numbers

•  algorithm for computing the 2's complement
(regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

•  representation for signed integer numbers
 in 2's complement

•  algorithm for computing the 2's complement
(regardless of the representation of the number)

 take the 2's complement

Example of 2’s complement subtraction

–	

0 1 0 1	

0 0 1 0	

5	
+	
(
)	

2	
+	
(
)	

3	
+	
(
)	

–	

1	

ignore	

+	

0 0 1 1	

0 1 0 1	

1 1 1 0	

[Figure 3.10 from the textbook]	

means take the 2's complement	

[Figure 3.11 from the textbook]	

Graphical interpretation of four-bit
2’s complement numbers

Example of 2’s complement subtraction

[Figure 3.10 from the textbook]	

–	

1 0 1 1	

0 0 1 0	
–	

1	

ignore	

+	

1 0 0 1	

1 0 1 1	

1 1 1 0	

5	
–	
(
)	

7	
–	
(
)	

2	
+	
(
)	

Example of 2’s complement subtraction

[Figure 3.10 from the textbook]	

–	

0 1 0 1	

1 1 1 0	

5	
+	
(
)	

7	
+	
(
)	

–	
 +	

0 1 1 1	

0 1 0 1	

0 0 1 0	
2	
–	
(
)	

Example of 2’s complement subtraction

[Figure 3.10 from the textbook]	

–	

1 0 1 1	

1 1 1 0	
–	
 +	

1 1 0 1	

1 0 1 1	

0 0 1 0	
2	
–	
(
)	

5	
–	
(
)	

3	
–	
(
)	

Take Home Message

•  Subtraction can be performed by simply adding the
2’s complement of the second number, regardless of
the signs of the two numbers.

•  Thus, the same adder circuit can be used to perform
both addition and subtraction !!!

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Adder/subtractor unit

XOR Tricks

y	

control	

out	

y	

0	

y	

XOR as a repeater

y	

1	

y	

XOR as an inverter

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Addition: when control = 0

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Addition: when control = 0

0	

0	
0	
0	

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Addition: when control = 0

0	

0	
0	
0	

yn-1	
 y1	
 y0	
…	

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

1	

1	
1	
1	

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

1	

1	
1	
1	

yn-1	
 y1	
 y0	
…	

s 	
0 	
s 	
1 	
s 	
n 	
 1 	
– 	

x 	
0 	
x 	
1 	
x 	
n 	
 1 	
– 	

c 	
n 	
 n 	
-bit adder	

y 	
0 	
y 	
1 	
y 	
n 	
 1 	
– 	

c 	
0 	

Add 	
⁄ 	
Sub 	

control 	

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

1	

1	
1	
1	

yn-1	
 y1	
 y0	
…	

1	

carry for the 	

first column!	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

[Figure 3.13 from the textbook]	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

0 1 1 0 0	
 0 0 0 0 0	

1 0 0 0 0	
1 1 1 0 0	

Include the carry bits: c4 c3 c2 c1 c0	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

0 1 1 0 0	
 0 0 0 0 0	

1 0 0 0 0	
1 1 1 0 0	

Include the carry bits: c4 c3 c2 c1 c0	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

0 1 1 0 0	
 0 0 0 0 0	

1 0 0 0 0	
1 1 1 0 0	

Include the carry bits: c4 c3 c2 c1 c0	

c	
4	
 0	
=	

c	
3	
 1	
=	

c	
4	
 1	
=	

c	
3	
 1	
=	

c	
4	
 0	
=	

c	
3	
 0	
=	

c	
4	
 1	
=	

c	
3	
 0	
=	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

0 1 1 0 0	
 0 0 0 0 0	

1 0 0 0 0	
1 1 1 0 0	

Overflow occurs only in these two cases.	

c	
4	
 0	
=	

c	
3	
 1	
=	

c	
4	
 1	
=	

c	
3	
 1	
=	

c	
4	
 0	
=	

c	
3	
 0	
=	

c	
4	
 1	
=	

c	
3	
 0	
=	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

0 1 1 0 0	
 0 0 0 0 0	

1 0 0 0 0	
1 1 1 0 0	

c	
4	
 0	
=	

c	
3	
 1	
=	

c	
4	
 1	
=	

c	
3	
 1	
=	

c	
4	
 0	
=	

c	
3	
 0	
=	

c	
4	
 1	
=	

c	
3	
 0	
=	

Overflow = c3c4 + c3c4	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

0 1 1 0 0	
 0 0 0 0 0	

1 0 0 0 0	
1 1 1 0 0	

c	
4	
 0	
=	

c	
3	
 1	
=	

c	
4	
 1	
=	

c	
3	
 1	
=	

c	
4	
 0	
=	

c	
3	
 0	
=	

c	
4	
 1	
=	

c	
3	
 0	
=	

Overflow = c3c4 + c3c4	

XOR	

Calculating overflow for 4-bit numbers
with only three significant bits

Calculating overflow for n-bit numbers
with only n-1 significant bits

FA	

x 	
n –	
1 	

c 	
n 	
 c 	
n 	
 1 	
” 	

y 	
n 	
 1 	
– 	

s 	
n 	
 1 	
– 	

FA	

x 	
1 	

c 	
2 	

y 	
1 	

s 	
1 	

FA	

c 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
0 	

Detecting Overflow

FA	

x 	
n –	
1 	

c 	
n 	
 c 	
n 	
 1 	
” 	

y 	
n 	
 1 	
– 	

s 	
n 	
 1 	
– 	

FA	

x 	
1 	

c 	
2 	

y 	
1 	

s 	
1 	

FA	

c 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
0 	

Detecting Overflow
(with one extra XOR)

overflow	

X= x3 x2 x1 x0!
Y= y3 y2 y1 y0!

!
 S= s3 s2 s1 s0!

!

+	

Another way to look at the overflow issue

X= x3 x2 x1 x0!
Y= y3 y2 y1 y0!

!
 S= s3 s2 s1 s0!

!

+	

Another way to look at the overflow issue

If both numbers that we are adding have the same sign 	

but the sum does not, then we have an overflow.	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow
x	
3	
 0	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 0	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

x	
3	
 1	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 1	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow
x	
3	
 0	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 0	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

x	
3	
 1	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 1	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

In 2's complement, both +9 and -9 are not representable with 4 bits.	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow
x	
3	
 0	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 0	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

x	
3	
 1	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 1	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

Overflow occurs only in these two cases.	

+	
+	

1 0 1 1	

1 0 0 1	

0 0 1 0	

1 0 0 1	

0 1 1 1	

0 0 1 0	

7	
+	
(
)	

2	
+	
(
)	

9	
+	
(
)	

+	

+	
+	

0 1 1 1	

1 0 0 1	

1 1 1 0	

0 1 0 1	

0 1 1 1	

1 1 1 0	

7	
+	
(
)	

5	
+	
(
)	

+	
 2	
–	
(
)	

1	
1	

2	
+	
(
)	

7	
–	
(
)	

5	
–	
(
)	

+	

7	
–	
(
)	

9	
–	
(
)	

+	
 2	
–	
(
)	

Examples of determination of overflow
x	
3	
 0	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 0	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

x	
3	
 1	
=	

y	
3	
 0	
=	

s	
3	
 1	
=	

x	
3	
 1	
=	

y	
3	
 1	
=	

s	
3	
 0	
=	

Overflow = x3 y3 s3 + x3 y3 s3	

X= x3 x2 x1 x0!
Y= y3 y2 y1 y0!

!
 S= s3 s2 s1 s0!

!

+	

Another way to look at the overflow issue

If both numbers that we are adding have the same sign 	

but the sum does not, then we have an overflow.	

Overflow = x3 y3 s3 + x3 y3 s3	

FA	

x 	
n –	
1 	

c 	
n 	
 c 	
n 	
 1 	
” 	

y 	
n 	
 1 	
– 	

s 	
n 	
 1 	
– 	

FA	

x 	
1 	

c 	
2 	

y 	
1 	

s 	
1 	

FA	

c 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
0 	

How long does it take to compute all
sum bits and all carry bits?

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.

The Full-Adder Circuit

[Figure 3.3c from the textbook]	

The Full-Adder Circuit

[Figure 3.3c from the textbook]	

Let's take a closer look at this.	

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci	

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

Decomposing the Carry Expression

yi	

xi	

ci+1	

ci	

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

yi	

xi	

ci	

ci+1	

si	

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

yi	

xi	

ci	

ci+1	

si	

ci+1 = xi yi + (xi + yi)ci	

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci	

yi	

xi	

ci	

ci+1	

si	

gi	
 pi	

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci	

yi	

xi	

ci	

ci+1	

si	

gi	
 pi	

gi	

pi	

g - generate	
 p - propagate	

Yet Another Way to Draw It (Just Rotate It)

ci	

ci+1	
 si	

xi	
 yi	

pi	
gi	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

The delay is 5 gates (1+2+2)

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

Stage 1 	

x 	
0 	
 y 	
0 	

g 	
0 	
 p 	
0 	

s 	
0 	

Stage 0 	

c 	
0 	
c 	
1 	
c 	
2 	

n-bit ripple-carry adder: 2n+1 gate delays

. . . 	

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci	

ci+1 = xi yi + (xi + yi)ci	

gi	
 pi	

ci+1 = gi + pi ci	

ci+1 = gi + pi (gi-1 + pi-1 ci-1)	

 = gi + pi gi-1 + pi pi-1 ci-1	

Carry for the first two stages

c1 = g0 + p0 c0	

c2 = g1 + p1g0 + p1p0c0	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

It takes 3 gate delays to generate c1

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

It takes 3 gate delays to generate c2

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

The first two stages of a carry-lookahead adder

2 	
c 	

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

It takes 4 gate delays to generate s1

2 	
c 	

It takes 4 gate delays to generate s2

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

s 	
2 	

N-bit Carry-Lookahead Adder

•  It takes 3 gate delays to generate all carry signals

•  It takes 1 more gate delay to generate all sum bits

•  Thus, the total delay through an n-bit
carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

c1 = g0 + p0 c0	

c2 = g1 + p1g0 + p1p0c0	

ci+1 = gi + pi ci	

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0	

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

. . .	

Expanding the Carry Expression

c1 = g0 + p0 c0	

c2 = g1 + p1g0 + p1p0c0	

ci+1 = gi + pi ci	

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0	

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

. . .	

Even this takes 	

only 3 gate delays 	

Block	

x	
31	
 24	
–	

c	
32	
 c	
24	

y	
31	
 24	
–	

s	
31	
 24	
–	

x	
15	
 8	
–	

c	
16	

y	
15	
 8	
–	

s	
15	
 8	
–	

c	
8	

x	
7	
 0	
–	
 y	
7	
 0	
–	

s	
7	
 0	
–	

c	
0	
3	
 Block	

1	
 Block	

0	

A hierarchical carry-lookahead adder with
ripple-carry between blocks

[Figure 3.16 from the textbook]	

Block 	

x 	
15	
 8 	
– 	
 y 	
15	
 8 	
– 	
 x 	
7 	
 0 	
– 	
 y 	
7 	
 0 	
– 	

3 	
 Block 	

1 	
 Block 	

0 	

Second-level lookahead	

c 	
0 	

s 	
7 	
 0 	
– 	

P 	
0 	
G 	
0 	
P 	
1 	
G 	
1 	
P 	
3 	
G 	
3 	

s 	
15	
 8 	
– 	
s 	
31	
 24	
– 	

c 	
8 	
c 	
16	
c 	
32	

x 	
31	
 24	
–	
 y 	
31	
 24	
– 	

c 	
24	

[Figure 3.17 from the textbook]	

A hierarchical carry-lookahead adder

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

G0	

P0	

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4	

	
+ p7p6p5p4g3 + p7p6p5p4p3g2	

	
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0	

	
+ p7p6p5p4p3p2p1p0c0	

G0	

P0	

c8 = G0 + P0 c0	

The Hierarchical Carry Expression

c8 = G0 + P0 c0	

c16 = G1 + P1 c8	

 = G1 + P1 G0 + P1 P0 c0	

c24 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0	

c32 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0	

Block 	

x 	
15	
 8 	
– 	
 y 	
15	
 8 	
– 	
 x 	
7 	
 0 	
– 	
 y 	
7 	
 0 	
– 	

3 	
 Block 	

1 	
 Block 	

0 	

Second-level lookahead	

c 	
0 	

s 	
7 	
 0 	
– 	

P 	
0 	
G 	
0 	
P 	
1 	
G 	
1 	
P 	
3 	
G 	
3 	

s 	
15	
 8 	
– 	
s 	
31	
 24	
– 	

c 	
8 	
c 	
16	
c 	
32	

x 	
31	
 24	
–	
 y 	
31	
 24	
– 	

c 	
24	

[Figure 3.17 from the textbook]	

A hierarchical carry-lookahead adder

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical
CLA Adder
Carry Logic

C8 – 5 gate delays ���
C16 – 5 gate delays ���
C24 – 5 Gate delays ���
C32 – 5 Gate delays 	

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical

CLA
Critical Path

 C9 – 7 gate delays ���

C17 – 7 gate delays ���
C25 – 7 Gate delays	

Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

•  Is 8 gates
§  3 to generate all Gj and Pj
§  +2 to generate c8, c16, c24, and c32
§  +2 to generate internal carries in the blocks
§  +1 to generate the sum bits (one extra XOR)

Questions?

THE END

