

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplication

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW 6 is out
- It is due on Monday Oct 10 @ 4pm

Quick Review

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

Another Way to Draw the Full-Adder Circuit

Decomposing the Carry Expression

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

Another Way to Draw the Full-Adder Circuit

$$
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Another Way to Draw the Full-Adder Circuit

$$
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Yet Another Way to Draw It (Just Rotate It)

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

The delay is $\mathbf{5}$ gates ($\mathbf{1 + 2 + 2)}$

n-bit ripple-carry adder: 2n+1 gate delays

Decomposing the Carry Expression

$$
\begin{aligned}
c_{i+1} & =x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
c_{i+1} & =\underbrace{x_{i} y_{i}}_{g_{i}}+\underbrace{\left(x_{i}+y_{i}\right.}_{p_{i}}) c_{i} \\
c_{i+1} & =g_{i}+p_{i} c_{i} \\
c_{i+1} & =g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
& =g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} c_{i-1}
\end{aligned}
$$

Carry for the first two stages

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

It takes $\mathbf{3}$ gate delays to generate $\mathbf{c}_{\mathbf{1}}$

It takes $\mathbf{3}$ gate delays to generate $\mathbf{c}_{\mathbf{2}}$

The first two stages of a carry-lookahead adder

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{1}}$

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{2}}$

N-bit Carry-Lookahead Adder

- It takes $\mathbf{3}$ gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits
- Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

$$
\begin{aligned}
c_{i+1}= & g_{i}+p_{i} c_{i} \\
c_{1}= & g_{0}+p_{0} c_{0} \\
c_{2}= & g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
c_{3}= & g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
\cdots & \\
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

Expanding the Carry Expression

$$
\begin{aligned}
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
& \cdots \\
& c_{8}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}
\end{aligned}
$$

Even this takes $+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}$ $\stackrel{\text { only } 3 \text { gate delays }}{ }+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{9}$ $+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}$

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7}{ }_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
& c_{8}= g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
&+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
&+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
&+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{9} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

The Hierarchical Carry Expression

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \\
c_{24} & =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0} \\
c_{32} & =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
\end{aligned}
$$

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

Hierarchical
 CLA Adder Carry Logic

SECOND
LEVEL HIERARCHY

C8 - 5 gate delays
C16-5 gate delays
C24-5 Gate delays
C32-5 Gate delays

FIRST LEVEL HIERARCHY

Hierarchical CLA

 Critical PathSECOND
LEVEL HIERARCHY

C9 - 7 gate delays
C17-7 gate delays
C25-7 Gate delays

FIRST LEVEL HIERARCHY

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- Is 8 gates
- 3 to generate all Gj and Pj
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=?
$$

$542 \times 10=$?
$1245 \times 10=?$

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by $10 ?$

$$
14 / 10=?
$$

$540 / 10=?$
$1240 \times 10=?$

Decimal Division by 10

What happens when we divide a number by $10 ?$

14/10=1 //integer division

$540 / 10=54$
$1240 \times 10=124$

You simply delete the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2 ?
011 times $2=$?

101 times $2=$?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2 ?

$$
011 \text { times } 2=0110
$$

101 times 2 = 1010

110011 times $2=1100110$

You simply add a zero as the rightmost number

Binary Multiplication by 4

What happens when we multiply a number by $\mathbf{4 ?}$

$$
011 \text { times } 4=?
$$

101 times $4=$?

110011 times 4 = ?

Binary Multiplication by 4

What happens when we multiply a number by $\mathbf{4 ?}$

$$
011 \text { times } 4=01100
$$

101 times $4=10100$

110011 times $4=11001100$
add two zeros in the last two bits and shift everything else to the left

Binary Multiplication by $\mathbf{2}^{\mathbf{N}}$

What happens when we multiply a number by $\mathbf{2}^{\mathrm{N}}$?
011 times $2^{\mathrm{N}}=01100 \ldots 0 \quad / /$ add N zeros

101 times 4 = 10100...0 |/ add N zeros

110011 times 4 = 11001100... 0 // add N zeros

Binary Division by 2

What happens when we divide a number by 2 ?

$$
0110 \text { divided by } 2=?
$$

1010 divides by $2=$?

110011 divides by $2=$?

Binary Division by 2

What happens when we divide a number by 2 ?
0110 divided by $2=011$

1010 divides by $2=101$

110011 divides by $2=11001$

You simply delete the rightmost number

Decimal Multiplication By Hand

5127
x 4265
25635
307620
1025400
20508000
21866655

Binary Multiplication By Hand

Multiplicand M
 Multiplier Q

(14)
(11)

1110
$\times 1011$
1110

1110
0000
1110
Product P
(154)

10011010

Binary Multiplication By Hand

Multiplicand M	(14)	1110
Multiplier Q	(11)	$\times 1011$
Partial product 0		1110
		+1110
Partial product 1		10101
		+ 0000
Partial product 2		01010
		+ 1110
Product P	(154)	10011010

Binary Multiplication By Hand

Figure 3.35. A 4×4 multiplier circuit.

Figure 3.35. A 4×4 multiplier circuit.

Positive Multiplicand Example

Multiplicand M
Multiplier Q
Partial product 0

Partial product 1

Partial product 2

Partial product 3

Product P
(+14)
(+11)
(+154)

[Figure 3.36a in the textbook]

Positive Multiplicand Example

Multiplicand M
Multiplier Q
Partial product 0
Partial product 1

Partial product 2

Partial product 3

Product P
$(+14)$
(+11)

[Figure 3.36a in the textbook]

Negative Multiplicand Example

Multiplicand M
Multiplier Q
Partial product 0

Partial product 1

Partial product 2

Partial product 3

Product P
(-14)
(+11)
(+11)

都

+110010
1101011
+000000
1110101
+110010
1501100
+0000001

Negative Multiplicand Example

[Figure 3.36b in the textbook]

What if the Multiplier is Negative?

- Convert both to their 2's complement version
- This will make the multiplier positive
- Then Proceed as normal
- This will not affect the result
- Example: $5^{*}(-4)=(-5)^{*}(4)=-20$

Binary Coded Decimal

Table of Binary-Coded Decimal Digits

Decimal digit	BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Addition of BCD digits

[Figure 3.38a in the textbook]

Addition of BCD digits

The result is greater than 9 , which is not a valid BCD number
[Figure 3.38a in the textbook]

Addition of BCD digits

[Figure 3.38a in the textbook]

Addition of BCD digits

[Figure 3.38b in the textbook]

Addition of BCD digits

The result is 1 , but it should be 7
[Figure 3.38b in the textbook]

Addition of BCD digits

[Figure 3.38b in the textbook]

Why add 6?

- Think of BCD addition as a mod 16 operation
- Decimal addition is mod 10 operation

BCD Arithmetic Rules

$$
Z=X+Y
$$

If $Z<=9$, then $S=Z$ and carry-out $=0$

If $Z>9$, then $S=Z+6$ and carry-out $=1$

Block diagram for a one-digit BCD adder

[Figure 3.39 in the textbook]

How to check if the number is $\mathbf{>} \mathbf{9 ?}$

$$
\begin{aligned}
& 7-0111 \\
& 8-1000 \\
& 9-1001 \\
& 10-1010 \\
& 11-1011 \\
& 12-1100 \\
& 13-1101 \\
& 14-1110 \\
& 15-1111
\end{aligned}
$$

A four-variable Karnaugh map

$x 1$	$x 2$	$x 3$	$x 4$	
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	0	m 2
0	0	1	1	m 3
0	1	0	0	m 4
0	1	0	1	m 5
0	1	1	0	m 6
0	1	1	1	m 7
1	0	0	0	m 8
1	0	0	1	m 9
1	0	1	0	m 10
1	0	1	1	m 11
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	0	m 14
1	1	1	1	m 15

$x_{1} x^{\prime}$				
${ }_{3} x_{4}$	00	01	11	10
00	m_{0}	m_{4}	m_{12}	m_{8}
01	m_{1}	m_{5}	m_{13}	m_{9}
11	m_{3}	m_{7}	m_{15}	m_{11}
10	m_{2}	m_{6}	m_{14}	m_{10}

How to check if the number is $\mathbf{>} \mathbf{9}$?

$z 3$	$z 2$	$z 1$	$z 0$	
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	0	m 2
0	0	1	1	m 3
0	1	0	0	m 4
0	1	0	1	m 5
0	1	1	0	m 6
0	1	1	1	m 7
1	0	0	0	m 8
1	0	0	1	m 9
1	0	1	0	m 10
1	0	1	1	m 11
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	0	m 14
1	1	1	1	m 15

How to check if the number is $\mathbf{>} \mathbf{9}$?

$z 3$	$z 2$	$z 1$	$z 0$	
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	0	m 2
0	0	1	1	m 3
0	1	0	0	m 4
0	1	0	1	m 5
0	1	1	0	m 6
0	1	1	1	m 7
1	0	0	0	m 8
1	0	0	1	m 9
1	0	1	0	m 10
1	0	1	1	m 11
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	0	m 14
1	1	1	1	m 15

$z_{1} z_{0} z^{z_{3}}$		01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	1
10	0	0	1	1
$\mathrm{f}=\mathrm{Z}_{3} \mathrm{Z}_{2}+\mathrm{Z}_{3} \mathrm{Z}_{1}$				

How to check if the number is $\boldsymbol{>} \mathbf{9}$?

$z 3$	$z 2$	$z 1$	$z 0$	
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	0	m 2
0	0	1	1	m 3
0	1	0	0	m 4
0	1	0	1	m 5
0	1	1	0	m 6
0	1	1	1	m 7
1	0	0	0	m 8
1	0	0	1	m 9
1	0	1	0	m 10
1	0	1	1	m 11
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	0	m 14
1	1	1	1	m 15

$z_{1} z_{0} z^{z_{3} z}$	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	1
10	0	0	1	$1)$
$\mathrm{f}=\mathrm{Z}_{3} \mathrm{Z}_{2}+\mathrm{Z}_{3} \mathrm{Z}_{1}$				

In addition, also check if there was a carry

$$
\mathrm{f}=\text { carry-out }+\mathrm{z}_{3} \mathrm{z}_{2}+\mathrm{z}_{3} \mathrm{z}_{1}
$$

Verilog code for a one-digit BCD adder

```
module bcdadd(Cin, X, Y, S, Cout);
    input Cin;
    input [3:0] X,Y;
    output reg [3:0] S;
    output reg Cout;
    reg [4:0] Z;
    always@ (X, Y, Cin)
    begin
        Z = X + Y + Cin;
        if (Z < 10)
            {Cout,S} = Z;
        else
            {Cout, S} = Z + 6;
    end
endmodule
```


Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Questions?

THE END

