

# **CprE 281: Digital Logic**

**Instructor: Alexander Stoytchev** 

http://www.ece.iastate.edu/~alexs/classes/

# Multiplication

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

#### **Administrative Stuff**

• HW 6 is out

It is due on Monday Oct 10 @ 4pm

# **Quick Review**

#### The Full-Adder Circuit



#### The Full-Adder Circuit



[Figure 3.3c from the textbook]



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$
$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$
$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$



$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$



$$c_{i+1} = \underbrace{x_i y_i}_{g_i} + \underbrace{(x_i + y_i)}_{p_i} c_i$$



$$c_{i+1} = \underbrace{x_i y_i}_{g_i} + \underbrace{(x_i + y_i)}_{p_i} c_i$$



#### Yet Another Way to Draw It (Just Rotate It)



#### Now we can Build a Ripple-Carry Adder



$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

[ Figure 3.14 from the textbook ]

#### Now we can Build a Ripple-Carry Adder



$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

[ Figure 3.14 from the textbook ]

# The delay is 5 gates (1+2+2)



## n-bit ripple-carry adder: 2n+1 gate delays



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

$$g_i \qquad p_i$$

$$c_{i+1} = g_i + p_i c_i$$

$$c_{i+1} = g_i + p_i (g_{i+1} + p_{i+1} c_{i+1})$$

 $= g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$ 

# Carry for the first two stages

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

#### The first two stages of a carry-lookahead adder



[ Figure 3.15 from the textbook ]

#### It takes 3 gate delays to generate c<sub>1</sub>



#### It takes 3 gate delays to generate c<sub>2</sub>



#### The first two stages of a carry-lookahead adder



#### It takes 4 gate delays to generate s<sub>1</sub>



#### It takes 4 gate delays to generate s<sub>2</sub>



# N-bit Carry-Lookahead Adder

- It takes 3 gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits

 Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

# **Expanding the Carry Expression**

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

$$\cdots$$

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$

$$+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

# **Expanding the Carry Expression**

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

$$\cdots$$

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$
Even this takes  $+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$ 
only 3 gate delays  $+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$ 

$$+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

# A hierarchical carry-lookahead adder with ripple-carry between blocks



#### A hierarchical carry-lookahead adder



[ Figure 3.17 from the textbook ]

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$

$$+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

$$c_8 = g_7 + p_7g_6 + p_7p_6g_5 + p_7p_6p_5g_4 + p_7p_6p_5p_4g_3 + p_7p_6p_5p_4p_3g_2 + p_7p_6p_5p_4p_3p_2g_1 + p_7p_6p_5p_4p_3p_2p_1g_0 + p_7p_6p_5p_4p_3p_2p_1p_0c_0$$



$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4}$$

$$+ p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_8 = G_0 + P_0 c_0$$

# The Hierarchical Carry Expression

$$c_8 = G_0 + P_0 c_0$$

$$c_{16} = G_1 + P_1 c_8$$
  
=  $G_1 + P_1 G_0 + P_1 P_0 c_0$ 

$$c_{24} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

$$c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

#### A hierarchical carry-lookahead adder



[ Figure 3.17 from the textbook ]

# Hierarchical CLA Adder Carry Logic

SECOND LEVEL HIERARCHY

C8 -5 gate delays

C16 – 5 gate delays

C24 – 5 Gate delays

C32 – 5 Gate delays



Block 3

Block 2

Block 1

FIRST LEVEL HIERARCHY

# Hierarchical CLA Critical Path

SECOND LEVEL HIERARCHY

Block 3

C9 - 7 gate delays

C17 – 7 gate delays

C25 – 7 Gate delays



FIRST LEVEL HIERARCHY

# Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- Is 8 gates
  - 3 to generate all Gj and Pj
  - +2 to generate c8, c16, c24, and c32
  - +2 to generate internal carries in the blocks
  - +1 to generate the sum bits (one extra XOR)

# **Decimal Multiplication by 10**

What happens when we multiply a number by 10?

$$4 \times 10 = ?$$

$$542 \times 10 = ?$$

$$1245 \times 10 = ?$$

# **Decimal Multiplication by 10**

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

# **Decimal Multiplication by 10**

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

You simply add a zero as the rightmost number

# **Decimal Division by 10**

What happens when we divide a number by 10?

$$1240 \times 10 = ?$$

#### **Decimal Division by 10**

What happens when we divide a number by 10?

$$1240 \times 10 = 124$$

You simply delete the rightmost number

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

What happens when we multiply a number by 2?

$$011 \text{ times } 2 = 0110$$

$$101 \text{ times } 2 = 1010$$

110011 times 2 = 1100110

You simply add a zero as the rightmost number

What happens when we multiply a number by 4?

011 times 4 = ?

101 times 4 = ?

110011 times 4 = ?

What happens when we multiply a number by 4?

011 times 4 = 01100

101 times 4 = 10100

110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left

# Binary Multiplication by 2<sup>N</sup>

What happens when we multiply a number by 2<sup>N</sup>?

011 times  $2^{N} = 01100...0$  // add N zeros

101 times 4 = 10100...0 // add N zeros

110011 times 4 = 11001100...0 // add N zeros

# **Binary Division by 2**

What happens when we divide a number by 2?

0110 divided by 2 = ?

1010 divides by 2 = ?

110011 divides by 2 = ?

# **Binary Division by 2**

What happens when we divide a number by 2?

0110 divided by 2 = 011

1010 divides by 2 = 101

110011 divides by 2 = 11001

You simply delete the rightmost number

# **Decimal Multiplication By Hand**

# **Binary Multiplication By Hand**

| Multiplicand M | (14)  | 1110     |
|----------------|-------|----------|
| Multiplier Q   | (11)  | X 1011   |
|                |       | 1110     |
|                |       | 1110     |
|                |       | 0000     |
|                |       | 1 1 1 0  |
| Product P      | (154) | 10011010 |

# **Binary Multiplication By Hand**



#### **Binary Multiplication By Hand**





Figure 3.35. A 4x4 multiplier circuit.



Figure 3.35. A 4x4 multiplier circuit.

#### Positive Multiplicand Example

Multiplicand M (+14)01110 Multiplier Q x 01011 (+11)0001110 Partial product 0 + 0011100010101 Partial product 1 + 000000Partial product 2 0001010 001110 0010011 Partial product 3 + 000000Product P (+154)0010011010

[Figure 3.36a in the textbook]

#### Positive Multiplicand Example



[Figure 3.36a in the textbook]

# **Negative Multiplicand Example**

| Multiplicand M<br>Multiplier Q | (-14)<br>(+11) | $10010 \times 01011$                                   |
|--------------------------------|----------------|--------------------------------------------------------|
| Partial product 0              | ( /            | 1110010                                                |
| Doutiel musdaget 1             |                | + 110010                                               |
| Partial product 1              |                | $\begin{array}{r} 1101011 \\ + 000000 \end{array}$     |
| Partial product 2              |                | $ \begin{array}{r} 1110101\\ +110010 \end{array} $     |
| Partial product 3              |                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| Product P                      | (-154)         | 1101100110                                             |

# Negative Multiplicand Example



# What if the Multiplier is Negative?

- Convert both to their 2's complement version
- This will make the multiplier positive
- Then Proceed as normal
- This will not affect the result
- Example: 5\*(-4) = (-5)\*(4) = -20

# **Binary Coded Decimal**

# **Table of Binary-Coded Decimal Digits**

| Decimal digit | BCD code |  |
|---------------|----------|--|
| 0             | 0000     |  |
| 1             | 0001     |  |
| 2             | 0010     |  |
| 3             | 0011     |  |
| 4             | 0100     |  |
| 5             | 0101     |  |
| 6             | 0110     |  |
| 7             | 0111     |  |
| 8             | 1000     |  |
| 9             | 1001     |  |

The result is greater than 9, which is not a valid BCD number



The result is 1, but it should be 7

# Addition of BCD digits



# Why add 6?

Think of BCD addition as a mod 16 operation

Decimal addition is mod 10 operation

#### **BCD Arithmetic Rules**

$$Z = X + Y$$

If Z <= 9, then S=Z and carry-out = 0

If Z > 9, then S=Z+6 and carry-out =1

## Block diagram for a one-digit BCD adder



[Figure 3.39 in the textbook]

```
7 - 0111
```

8 - 1000

9 - 1001

10 - 1010

11 - 1011

12 - 1100

13 - 1101

14 - 1110

15 - 1111

# A four-variable Karnaugh map

| x1 | x2 | <b>x</b> 3 | <b>x4</b> |     |
|----|----|------------|-----------|-----|
| 0  | 0  | 0          | 0         | m0  |
| 0  | 0  | 0          | 1         | m1  |
| 0  | 0  | 1          | 0         | m2  |
| 0  | 0  | 1          | 1         | m3  |
| 0  | 1  | 0          | 0         | m4  |
| 0  | 1  | 0          | 1         | m5  |
| 0  | 1  | 1          | 0         | m6  |
| 0  | 1  | 1          | 1         | m7  |
| 1  | 0  | 0          | 0         | m8  |
| 1  | 0  | 0          | 1         | m9  |
| 1  | 0  | 1          | 0         | m10 |
| 1  | 0  | 1          | 1         | m11 |
| 1  | 1  | 0          | 0         | m12 |
| 1  | 1  | 0          | 1         | m13 |
| 1  | 1  | 1          | 0         | m14 |
| 1  | 1  | 1          | 1         | m15 |



| z3 | <b>z</b> 2 | z1 | <b>z</b> 0 |     |
|----|------------|----|------------|-----|
| 0  | 0          | 0  | 0          | m0  |
| 0  | 0          | 0  | 1          | m1  |
| 0  | 0          | 1  | 0          | m2  |
| 0  | 0          | 1  | 1          | m3  |
| 0  | 1          | 0  | 0          | m4  |
| 0  | 1          | 0  | 1          | m5  |
| 0  | 1          | 1  | 0          | m6  |
| 0  | 1          | 1  | 1          | m7  |
| 1  | 0          | 0  | 0          | m8  |
| 1  | 0          | 0  | 1          | m9  |
| 1  | 0          | 1  | 0          | m10 |
| 1  | 0          | 1  | 1          | m11 |
| 1  | 1          | 0  | 0          | m12 |
| 1  | 1          | 0  | 1          | m13 |
| 1  | 1          | 1  | 0          | m14 |
| 1  | 1          | 1  | 1          | m15 |

| $z = x^2 3^2 2$ |    |    |    |    |  |  |
|-----------------|----|----|----|----|--|--|
| $z_1 z_0$       | 00 | 01 | 11 | 10 |  |  |
| 00              | 0  | 0  | 1  | 0  |  |  |
| 01              | 0  | 0  | 1  | 0  |  |  |
| 11              | 0  | 0  | 1  | 1  |  |  |
| 10              | 0  | 0  | 1  | 1  |  |  |

| z3 | <b>z</b> 2 | z1 | z0 |     |
|----|------------|----|----|-----|
| 0  | 0          | 0  | 0  | m0  |
| 0  | 0          | 0  | 1  | m1  |
| 0  | 0          | 1  | 0  | m2  |
| 0  | 0          | 1  | 1  | m3  |
| 0  | 1          | 0  | 0  | m4  |
| 0  | 1          | 0  | 1  | m5  |
| 0  | 1          | 1  | 0  | m6  |
| 0  | 1          | 1  | 1  | m7  |
| 1  | 0          | 0  | 0  | m8  |
| 1  | 0          | 0  | 1  | m9  |
| 1  | 0          | 1  | 0  | m10 |
| 1  | 0          | 1  | 1  | m11 |
| 1  | 1          | 0  | 0  | m12 |
| 1  | 1          | 0  | 1  | m13 |
| 1  | 1          | 1  | 0  | m14 |
| 1  | 1          | 1  | 1  | m15 |



$$f = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$$

| z3 | z2 | z1 | z0 |     |
|----|----|----|----|-----|
| 0  | 0  | 0  | 0  | m0  |
| 0  | 0  | 0  | 1  | m1  |
| 0  | 0  | 1  | 0  | m2  |
| 0  | 0  | 1  | 1  | m3  |
| 0  | 1  | 0  | 0  | m4  |
| 0  | 1  | 0  | 1  | m5  |
| 0  | 1  | 1  | 0  | m6  |
| 0  | 1  | 1  | 1  | m7  |
| 1  | 0  | 0  | 0  | m8  |
| 1  | 0  | 0  | 1  | m9  |
| 1  | 0  | 1  | 0  | m10 |
| 1  | 0  | 1  | 1  | m11 |
| 1  | 1  | 0  | 0  | m12 |
| 1  | 1  | 0  | 1  | m13 |
| 1  | 1  | 1  | 0  | m14 |
| 1  | 1  | 1  | 1  | m15 |



$$f = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$$

In addition, also check if there was a carry

$$f = carry-out + z_3z_2 + z_3z_1$$

### Verilog code for a one-digit BCD adder

```
module bcdadd(Cin, X, Y, S, Cout);
  input Cin;
  input [3:0] X,Y;
  output reg [3:0] S;
  output reg Cout;
  reg [4:0] Z;
  always@ (X, Y, Cin)
  begin
     Z = X + Y + Cin;
     if (Z < 10)
        \{Cout, S\} = Z;
     else
        \{Cout, S\} = Z + 6;
  end
endmodule
```



[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]

**Questions?** 

# THE END