

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplexers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW 6 is due on Monday

Administrative Stuff

- HW 7 is out
- It is due on Monday Oct 17 @ 4pm

2-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $\mathbf{s}=0$, then the output is equal to \mathbf{x}_{1}
- If $\mathbf{s}=1$, then the output is equal to \mathbf{x}_{2}

Graphical Symbol for a 2-1 Multiplexer

Truth Table for a 2-1 Multiplexer

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

[Figure 2.33a from the textbook]

Let's Derive the SOP form

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Let's Derive the SOP form

$s x_{1} x_{2}$	$f\left(s, x_{1}, x_{2}\right)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Let's Derive the SOP form

| s | x_{1} | x_{2} |
| :---: | :---: | :---: | \left\lvert\, \(f\left(s, x_{1}, x_{2}\right) ~\left(\left.\begin{array}{ccc}0 \& 0

\hline 0 \& 0 \& 0\end{array} \right\rvert\,\right.\right.\)

Where should we put the negation signs?

$$
\begin{array}{lll}
s & x_{1} & x_{2} \\
s & x_{1} & x_{2} \\
& & x_{1} \\
x_{2}
\end{array}
$$

Let's Derive the SOP form

Let's Derive the SOP form

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
\begin{aligned}
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
\end{aligned}
$$

Let's simplify this expression

$$
\begin{aligned}
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2} \\
& f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
\end{aligned}
$$

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[Figure 2.33b-c from the textbook]

Analysis of the 2-1 Multiplexer (when the input $\mathbf{s}=0$)

Analysis of the 2-1 Multiplexer (when the input $\mathrm{s}=1$)

Analysis of the 2-1 Multiplexer (when the input $\mathrm{s}=0$)

Analysis of the 2-1 Multiplexer (when the input $\mathrm{s}=1$)

More Compact Truth-Table Representation

$\left.\begin{array}{cc||c}\hline s & x_{1} & x_{2} \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & \left.x_{1}, x_{2}\right) \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

(a)Truth table
[Figure 2.33 from the textbook]

4-1 Multiplexer (Definition)

- Has four inputs: $\mathbf{w}_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and \mathbf{s}_{0}
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

Graphical Symbol and Truth Table

(a) Graphic symbol

(b) Truth table

The long-form truth table

The long-form truth table

4-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=1$)

Analysis of the 4-1 Multiplexer ($s_{1}=1$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer
($s_{1}=1$ and $s_{0}=1$)

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer ($s_{1}=0$ and $s_{0}=1$)

Analysis of the 4-1 Multiplexer ($s_{1}=1$ and $s_{0}=0$)

Analysis of the 4-1 Multiplexer ($s_{1}=1$ and $s_{0}=1$)

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

That is different from the SOP form of the 4-1 multiplexer shown below, which uses less gates

Analysis of the Hierarchical Implementation ($\mathrm{s}_{1}=0$ and $\mathrm{s}_{0}=0$)

[Figure 4.3 from the textbook]

Analysis of the Hierarchical Implementation ($s_{1}=0$ and $s_{0}=1$)

[Figure 4.3 from the textbook]

Analysis of the Hierarchical Implementation ($\mathrm{s}_{1}=1$ and $\mathrm{s}_{0}=0$)

[Figure 4.3 from the textbook]

Analysis of the Hierarchical Implementation ($\mathrm{s}_{1}=1$ and $\mathrm{s}_{0}=1$)

[Figure 4.3 from the textbook]

16-1 Multiplexer

[Figure 4.4 from the textbook]

Multiplexers Are Special

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

x_{1}	x_{2}	$x_{1}+x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

Building an AND Gate with 4-to-1 Mux

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Building an AND Gate with 4-to-1 Mux

These two are the same.

Building an AND Gate with 4-to-1 Mux

These two are the same.
And so are these two.

Building an OR Gate with 4-to-1 Mux

$$
\begin{array}{cc||c}
x_{1} & & x_{1}+x_{2} \\
x_{2} & & \\
x_{1} & x_{2} & x_{1}+x_{2} \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}
$$

Building an OR Gate with 4-to-1 Mux

These two are the same.

Building an OR Gate with 4-to-1 Mux

These two are the same.
And so are these two.

Building a NOT Gate with 4-to-1 Mux

Building a NOT Gate with 4-to-1 Mux

Introduce a dummy variable y .

Building a NOT Gate with 4-to-1 Mux

Building a NOT Gate with 4-to-1 Mux

Now set y to either 0 or 1 (both will work). Why?

Building a NOT Gate with 4-to-1 Mux

x	\bar{x}
0	1
1	0

Two alternative solutions.

Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

Building an AND Gate with 2-to-1 Mux

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Building an AND Gate with 2-to-1 Mux

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Building an AND Gate with 2-to-1 Mux

$\left.\begin{array}{c|c||cc}x_{1} & x_{2} & x_{1} \cdot x_{2} & \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\} \quad 0$

Building an OR Gate with 2-to-1 Mux

x_{1}	$x_{1}+x_{2}$	
x_{2}	x_{2}	$x_{1}+x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

Building an OR Gate with 2-to-1 Mux

x_{1}		
x_{2}	$x_{1}+x_{2}$	
x_{1}	x_{2}	$x_{1}+x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

Building an OR Gate with 2-to-1 Mux

Building a NOT Gate with 2-to-1 Mux

Building a NOT Gate with 2-to-1 Mux

x	\bar{x}
0	1
1	0

Implications

Any Boolean function can be implemented using only 2-to-1 multiplexers!

Synthesis of Logic Circuits Using Multiplexers

2×2 Crossbar switch

[Figure 4.5a from the textbook]

2×2 Crossbar switch

Implementation of a 2×2 crossbar switch with multiplexers

[Figure 4.5 b from the textbook]

Implementation of a 2×2 crossbar switch with multiplexers

Implementation of a 2×2 crossbar switch with multiplexers

Implementation of a logic function with a 4x1 multiplexer

w_{1}	w_{2}	f
0	0	0
0	1	1
1	0	1
1	1	0

[Figure 4.6a from the textbook]

Implementation of the same logic function with a 2×1 multiplexer

(b) Modified truth table

(c) Circuit

The XOR Logic Gate

(b) Truth table

The XOR Logic Gate

(a) Two switches that control a light
(c) Logic network

(b) Truth table

(d) XOR gate symbol
[Figure 2.11 from the textbook]

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

These two circuits are equivalent (the wires of the bottom AND gate are flipped)

In other words, all four of these are equivalent!

Implementation of another logic function

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Implementation of another logic function

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Implementation of another logic function

Implementation of another logic function

[Figure 4.7 from the textbook]

Another Example (3-input XOR)

Implementation of 3-input XOR with 2-to-1 Multiplexers

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with 2-to-1 Multiplexers

$\left.\begin{array}{l|ll|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right\} w_{2} \oplus w_{3}$

Implementation of 3-input XOR with 2-to-1 Multiplexers

(a) Truth table
(b) Circuit

Implementation of 3-input XOR with 2-to-1 Multiplexers

$\left.\begin{array}{l|l|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \quad \mathbf{W}_{\mathbf{3}}$
(a) Truth table

(b) Circuit

Implementation of 3-input XOR with a 4-to-1 Multiplexer

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with a 4-to-1 Multiplexer

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{ll|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} w_{3}$

Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{ll|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} w_{3}$
(a) Truth table

(b) Circuit
[Figure 4.9 from the textbook]

Multiplexor Synthesis Using Shannon's Expansion

Three-input majority function

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Three-input majority function

Three-input majority function

Three-input majority function

(b) Truth table

(b) Circuit
[Figure 4.10a from the textbook]

Three-input majority function

$$
\begin{aligned}
f & =\bar{w}_{1} w_{2} w_{3}+w_{1} \bar{w}_{2} w_{3}+w_{1} w_{2} \bar{w}_{3}+w_{1} w_{2} w_{3} \\
f & =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(\bar{w}_{2} w_{3}+w_{2} \bar{w}_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

$$
f=\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}}
$$

Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

Shannon's Expansion Theorem (Example)

$$
f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(\bar{w}_{1}+w_{1}\right)
\end{aligned}
$$

Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(\bar{w}_{1}+w_{1}\right) \\
& f=\bar{w}_{1}\left(0 \cdot w_{2}+0 \cdot w_{3}+w_{2} w_{3}\right)+w_{1}\left(1 \cdot w_{2}+1 \cdot w_{3}+w_{2} w_{3}\right) \\
& \quad=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Shannon's Expansion Theorem (In terms of more than one variable)

$$
\begin{aligned}
f\left(w_{1}, \ldots, w_{n}\right)= & \bar{w}_{1} \bar{w}_{2} \cdot f\left(0,0, w_{3}, \ldots, w_{n}\right)+\bar{w}_{1} w_{2} \cdot f\left(0,1, w_{3}, \ldots, w_{n}\right) \\
& +w_{1} \bar{w}_{2} \cdot f\left(1,0, w_{3}, \ldots, w_{n}\right)+w_{1} w_{2} \cdot f\left(1,1, w_{3}, \ldots, w_{n}\right)
\end{aligned}
$$

This form is suitable for implementation with a 4×1 multiplexer.

Another Example

Factor and implement the following function with a 2×1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

Factor and implement the following function with a 2×1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}} \\
& =\bar{w}_{1}\left(\bar{w}_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Factor and implement the following function with a 2×1 multiplexer

$$
\begin{aligned}
f & =\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}} \\
& =\bar{w}_{1}\left(\bar{w}_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

[Figure 4.11a from the textbook]

Factor and implement the following function with a 4x1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

Factor and implement the following function with a 4×1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1} \bar{w}_{2} f_{\bar{w}_{1} \bar{w}_{2}}+\bar{w}_{1} w_{2} f_{\bar{w}_{1}}+w_{1} \bar{w}_{2} f_{w_{1} \bar{w}_{2}}+w_{1} w_{2} f_{w_{1} w_{2}} \\
& =\bar{w}_{1} \bar{w}_{2}\left(\bar{w}_{3}\right)+\bar{w}_{1} w_{2}\left(\bar{w}_{3}\right)+w_{1} \bar{w}_{2}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{aligned}
$$

Factor and implement the following function with a 4x1 multiplexer

$$
\begin{aligned}
& f=\bar{w}_{1} \bar{w}_{2} f_{\bar{w}_{1} \bar{w}_{2}}+\bar{w}_{1} w_{2} f_{\bar{w}_{1} w_{2}}+w_{1} \bar{w}_{2} f_{w_{1} \bar{w}_{2}}+w_{1} w_{2} f_{w_{1} w_{2}} \\
& =\bar{w}_{1} \bar{w}_{2}\left(w_{3}\right)+\bar{w}_{1} w_{2}\left(\bar{w}_{3}\right)+w_{1} \bar{w}_{2}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{aligned}
$$

[Figure 4.11b from the textbook]

Yet Another Example

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

Factor and implement the following function using only 2×1 multiplexers

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Factor and implement the following function using only 2×1 multiplexers

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

$$
\begin{gathered}
f=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
=\bar{w}_{1}(\underbrace{w_{2} w_{3}})+w_{1}(\underbrace{w_{2}+w_{3}}) \\
\quad g=w_{2} w_{3} \quad h=w_{2}+w_{3}
\end{gathered}
$$

Factor and implement the following function using only 2×1 multiplexers

$$
\begin{gathered}
f=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
=\bar{w}_{1}(\underbrace{w_{2} w_{3}})+w_{1}(\underbrace{w_{2}+w_{3}}) \\
\quad g=w_{2} w_{3} \quad h=w_{2}+w_{3}
\end{gathered}
$$

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
g=w_{2} w_{3}
$$

$$
h=w_{2}+w_{3}
$$

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
\begin{array}{cc}
g=w_{2} w_{3} & h=w_{2}+w_{3} \\
\downarrow=\bar{w}_{2}(0)+w_{2}\left(w_{3}\right) & h=\bar{w}_{2}\left(w_{3}\right)+w_{2}(1)
\end{array}
$$

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
g=\bar{w}_{2}(0)+w_{2}\left(w_{3}\right)
$$

$$
h=\bar{w}_{2}\left(w_{3}\right)+w_{2}(1)
$$

Finally, we are ready to draw the circuit

Finally, we are ready to draw the circuit

Finally, we are ready to draw the circuit

[Figure 4.12 from the textbook]

Questions?

THE END

