

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplexers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• HW 6 is due on Monday

Administrative Stuff

- HW 7 is out
- It is due on Monday Oct 17 @ 4pm

2-1 Multiplexer (Definition)

- Has two inputs: x_1 and x_2
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x_2

Graphical Symbol for a 2-1 Multiplexer

[Figure 2.33c from the textbook]

Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$			
000	0			
001	0			
010	1			
011	1			
100	0			
101	1			
110	0			
111	1			

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

Circuit for 2-1 Multiplexer

(c) Graphical symbol

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

[Figure 2.33b-c from the textbook]

Analysis of the 2-1 Multiplexer (when the input s=0)

Analysis of the 2-1 Multiplexer (when the input s=1)

Analysis of the 2-1 Multiplexer (when the input s=0)

Analysis of the 2-1 Multiplexer (when the input s=1)

More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

S	$f(s, x_1, x_2)$
0	x_1
1	<i>x</i> ₂

(a)Truth table

[Figure 2.33 from the textbook]

4-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

Graphical Symbol and Truth Table

<i>s</i> ₁	<i>s</i> 0	f
0	0	w ₀
0	1	w_1
1	0	w_2
1	1	<i>w</i> ₃

(a) Graphic symbol

(b) Truth table

The long-form truth table

The long-form truth table

$\mathbf{S}_1 \mathbf{S}_0$	I ₃ I ₂ I ₁ I ₀	F S1 S0	I ₃ I ₂ I	1 I0 F	S_1S_0 I_3 I_2 I_1 I_0	F S1 S0 I3 I2 I1 I0 F
0 0	0 0 0 0	0 0 1	0 0 0	0 0	100000	0 1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0) 1 0	0 0 0 1	0 0 0 1 0
	0 0 1 0	0	0 0 1	0 1	0 0 1 0	0 0 0 1 0 0
	0 0 1 1	1	0 0 1	1 1	0 0 1 1	0 0 0 1 1 0
	0 1 0 0	0	0 1 0	0 0	0 1 0 0	1 0 1 0 0 0
	0 1 0 1	1	0 1 0) 1 0	0 1 0 1	1 0 1 0 1 0
	0 1 1 0	0	0 1 1	0 1	0 1 1 0	1 0 1 1 0 0
	0 1 1 1	1	0 1 1	1 1	0 1 1 1	1 0 1 1 1 0
	1 0 0 0	0	1 0 0	0 0	1 0 0 0	0 1 0 0 0 1
	1001	1	1 0 0) 1 0	1 0 0 1	0 1 0 0 1 1
	1010	0	1 0 1	0 1	1 0 1 0	0 10101
	1 0 1 1	1	1 0 1	1 1	1 0 1 1	0 1 0 1 1 1
	1 1 0 0	0	1 1 0	0 0	1 1 0 0	1 1 1 0 0 1
	1 1 0 1	1	1.1.0) 1 0	1 1 0 1	1 1 1 0 1 1
	1 1 1 0	0	1 1 1	0 1	1 1 1 0	1 1 1 0 1
	1 1 1 1	1	1 1 1	1 1	1 1 1 1	1 1 1 1 1

[http://www.absoluteastronomy.com/topics/Multiplexer]

4-1 Multiplexer (SOP circuit)

$$f = s_1 s_0 w_0 + s_1 s_0 w_1 + s_1 s_0 w_2 + s_1 s_0 w_3$$

[Figure 4.2c from the textbook]

Analysis of the 4-1 Multiplexer (s_1 =1 and s_0 =1)

That is different from the SOP form of the 4-1 multiplexer shown below, which uses less gates

Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=0)$

Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=1)$

Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=0)$

Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=1)$

16-1 Multiplexer

Multiplexers Are Special

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

Truth Table for AND

Truth Table for OR

f

These two are the same.

These two are the same. And so are these two.

These two are the same.

These two are the same. And so are these two.

Introduce a dummy variable y.

Now set y to either 0 or 1 (both will work). Why?

Two alternative solutions.

Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

Building a NOT Gate with 2-to-1 Mux

X	\overline{X}
0	1
1	0

Implications

Any Boolean function can be implemented using only 2-to-1 multiplexers!

Synthesis of Logic Circuits Using Multiplexers

2 x 2 Crossbar switch

2 x 2 Crossbar switch

Implementation of a 2 x 2 crossbar switch with multiplexers

Implementation of a 2 x 2 crossbar switch with multiplexers

Implementation of a 2 x 2 crossbar switch with multiplexers

Implementation of a logic function with a 4x1 multiplexer

<i>w</i> ₁	^w 2	f
0	0	0
0	1	1
1	0	1
1	1	0

Implementation of the same logic function with a 2x1 multiplexer

(b) Modified truth table

 w_2 f

(c) Circuit

The XOR Logic Gate

(a) Two switches that control a light

(b) Truth table

[Figure 2.11 from the textbook]

The XOR Logic Gate

(a) Two switches that control a light

(b)	Truth	table

L

0

1

1

0

(c) Logic network

(d) XOR gate symbol

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

These two circuits are equivalent (the wires of the bottom AND gate are flipped)

In other words, all four of these are equivalent!

w_1	w_2	<i>w</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

	142	147	142	f	
	<i>w</i> ₁	<i>w</i> 2	<i>w</i> ₃	J	
	0	0	0	0	
_	0	0	1	0	
	0	1	0	0	
	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	

Another Example (3-input XOR)

w_1	w_2	<i>w</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(b) Circuit

<i>w</i> ₁	w_2	<i>w</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

<i>w</i> ₁	w_2	<i>w</i> ₃	f	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

<i>w</i> ₁	w_2	<i>w</i> ₃	f
0	0	0	0
0	0	1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} w_3 \end{pmatrix}$
0	1	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \overline{w}_3$
0	1	1	0 1 1 3
1	0	0	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \overline{w}_3$
1	0	1	0 1 "3
1	1	0	0)
1	1	1	$1 \qquad w_3$

(a) Truth table

(b) Circuit

Multiplexor Synthesis Using Shannon's Expansion

w_1	w_2	<i>w</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$

 $f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$ = $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

 $f(w_1, w_2, \ldots, w_n) = \overline{w}_1 \cdot f(0, w_2, \ldots, w_n) + w_1 \cdot f(1, w_2, \ldots, w_n)$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$

Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$

Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$ $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$

$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2 w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2 w_3)$$

= $\overline{w}_1(w_2 w_3) + w_1(w_2 + w_3)$

Shannon's Expansion Theorem (In terms of more than one variable)

$$f(w_1, \dots, w_n) = \overline{w}_1 \overline{w}_2 \cdot f(0, 0, w_3, \dots, w_n) + \overline{w}_1 w_2 \cdot f(0, 1, w_3, \dots, w_n) + w_1 \overline{w}_2 \cdot f(1, 0, w_3, \dots, w_n) + w_1 w_2 \cdot f(1, 1, w_3, \dots, w_n)$$

This form is suitable for implementation with a 4x1 multiplexer.

Another Example

Factor and implement the following function with a 2x1 multiplexer

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

Factor and implement the following function with a 2x1 multiplexer

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$

Factor and implement the following function with a 2x1 multiplexer

 $f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$ $= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$

[Figure 4.11a from the textbook]

Factor and implement the following function with a 4x1 multiplexer

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

Factor and implement the following function with a 4x1 multiplexer

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Factor and implement the following function with a 4x1 multiplexer

 $f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$ $= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$

[Figure 4.11b from the textbook]

Yet Another Example

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$
$$= \overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
 $g = w_2w_3$ $h = w_2 + w_3$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
 $g = w_2w_3$ $h = w_2 + w_3$

$$g = w_2 w_3 \qquad \qquad h = w_2 + w_3$$

 $g = \overline{w}_2(0) + w_2(w_3)$ $h = \overline{w}_2(w_3) + w_2(1)$

Finally, we are ready to draw the circuit

Finally, we are ready to draw the circuit

Finally, we are ready to draw the circuit

[Figure 4.12 from the textbook]

Questions?

THE END