

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Decoders and Encoders

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW 6 is due today

Administrative Stuff

- HW 7 is out
- It is due next Monday (Oct 17)

Administrative Stuff

- Midterm Grades are Due this Friday
- only grades of C-, D, F have to be submitted to the registrar's office

Quick Review

Graphical Symbol for a 2-1 Multiplexer

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[Figure 2.33b-c from the textbook]

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Building an AND Gate with 2-to-1 Mux

$\left.\begin{array}{c|c||cc}x_{1} & x_{2} & x_{1} \cdot x_{2} & \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\} \quad 0$

Building an OR Gate with 2-to-1 Mux

Building a NOT Gate with 2-to-1 Mux

x	\bar{x}
0	1
1	0

Implications

Any Boolean function can be implemented using only 2-to-1 multiplexers!

4-to-1 Multiplexer: Graphical Symbol and Truth Table

(a) Graphic symbol

(b) Truth table

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Building an AND Gate with 4-to-1 Mux

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR Gate with 4-to-1 Mux

$$
\begin{array}{cc||c}
x_{1} & & x_{1}+x_{2} \\
x_{2} & & \\
x_{1} & x_{2} & x_{1}+x_{2} \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}
$$

Building a NOT Gate with 4-to-1 Mux

x	\bar{x}
0	1
1	0

Two alternative solutions.

Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

16-1 Multiplexer

[Figure 4.4 from the textbook]

Synthesis of Logic Circuits Using Multiplexers

Implementation of a logic function with a 4x1 multiplexer

w_{1}	w_{2}	f
0	0	0
0	1	1
1	0	1
1	1	0

[Figure 4.6a from the textbook]

Implementation of the same logic function with a 2×1 multiplexer

(b) Modified truth table

(c) Circuit

The XOR Logic Gate

(b) Truth table

The XOR Logic Gate

(a) Two switches that control a light
(c) Logic network

(b) Truth table

(d) XOR gate symbol
[Figure 2.11 from the textbook]

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

These two circuits are equivalent (the wires of the bottom AND gate are flipped)

In other words, all four of these are equivalent!

Another Example (3-input XOR)

Implementation of 3-input XOR with 2-to-1 Multiplexers

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with 2-to-1 Multiplexers

$\left.\begin{array}{l|ll|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right\} w_{2} \oplus w_{3}$

Implementation of 3-input XOR with 2-to-1 Multiplexers

(a) Truth table
(b) Circuit

Implementation of 3-input XOR with 2-to-1 Multiplexers

$\left.\begin{array}{l|l|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \quad \mathbf{W}_{\mathbf{3}}$
(a) Truth table

(b) Circuit

Implementation of 3-input XOR with a 4-to-1 Multiplexer

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with a 4-to-1 Multiplexer

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{ll|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} w_{3}$

Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{ll|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} w_{3}$
(a) Truth table

(b) Circuit
[Figure 4.9 from the textbook]

Multiplexor Synthesis Using Shannon's Expansion

Three-input majority function

w_{1}	w_{2}	w_{3}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Three-input majority function

Three-input majority function

Three-input majority function

(b) Truth table

(b) Circuit
[Figure 4.10a from the textbook]

Three-input majority function

$$
\begin{aligned}
f & =\bar{w}_{1} w_{2} w_{3}+w_{1} \bar{w}_{2} w_{3}+w_{1} w_{2} \bar{w}_{3}+w_{1} w_{2} w_{3} \\
f & =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(\bar{w}_{2} w_{3}+w_{2} \bar{w}_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

$$
f=\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}}
$$

Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

Shannon's Expansion Theorem (Example)

$$
f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(\bar{w}_{1}+w_{1}\right)
\end{aligned}
$$

Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(\bar{w}_{1}+w_{1}\right) \\
& f=\bar{w}_{1}\left(0 \cdot w_{2}+0 \cdot w_{3}+w_{2} w_{3}\right)+w_{1}\left(1 \cdot w_{2}+1 \cdot w_{3}+w_{2} w_{3}\right) \\
& \quad=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Shannon's Expansion Theorem (In terms of more than one variable)

$$
\begin{aligned}
f\left(w_{1}, \ldots, w_{n}\right)= & \bar{w}_{1} \bar{w}_{2} \cdot f\left(0,0, w_{3}, \ldots, w_{n}\right)+\bar{w}_{1} w_{2} \cdot f\left(0,1, w_{3}, \ldots, w_{n}\right) \\
& +w_{1} \bar{w}_{2} \cdot f\left(1,0, w_{3}, \ldots, w_{n}\right)+w_{1} w_{2} \cdot f\left(1,1, w_{3}, \ldots, w_{n}\right)
\end{aligned}
$$

This form is suitable for implementation with a 4×1 multiplexer.

Another Example

Factor and implement the following function with a 2×1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

Factor and implement the following function with a 2×1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}} \\
& =\bar{w}_{1}\left(\bar{w}_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Factor and implement the following function with a 2×1 multiplexer

$$
\begin{aligned}
f & =\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}} \\
& =\bar{w}_{1}\left(\bar{w}_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

[Figure 4.11a from the textbook]

Factor and implement the following function with a 4x1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

Factor and implement the following function with a 4×1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1} \bar{w}_{2} f_{\bar{w}_{1} \bar{w}_{2}}+\bar{w}_{1} w_{2} f_{\bar{w}_{1}}+w_{1} \bar{w}_{2} f_{w_{1} \bar{w}_{2}}+w_{1} w_{2} f_{w_{1} w_{2}} \\
& =\bar{w}_{1} \bar{w}_{2}\left(\bar{w}_{3}\right)+\bar{w}_{1} w_{2}\left(\bar{w}_{3}\right)+w_{1} \bar{w}_{2}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{aligned}
$$

Factor and implement the following function with a 4x1 multiplexer

$$
\begin{aligned}
& f=\bar{w}_{1} \bar{w}_{2} f_{\bar{w}_{1} \bar{w}_{2}}+\bar{w}_{1} w_{2} f_{\bar{w}_{1} w_{2}}+w_{1} \bar{w}_{2} f_{w_{1} \bar{w}_{2}}+w_{1} w_{2} f_{w_{1} w_{2}} \\
& =\bar{w}_{1} \bar{w}_{2}\left(w_{3}\right)+\bar{w}_{1} w_{2}\left(\bar{w}_{3}\right)+w_{1} \bar{w}_{2}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{aligned}
$$

[Figure 4.11b from the textbook]

Yet Another Example

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

Factor and implement the following function using only 2×1 multiplexers

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Factor and implement the following function using only 2×1 multiplexers

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

$$
\begin{gathered}
f=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
=\bar{w}_{1}(\underbrace{w_{2} w_{3}})+w_{1}(\underbrace{w_{2}+w_{3}}) \\
\quad g=w_{2} w_{3} \quad h=w_{2}+w_{3}
\end{gathered}
$$

Factor and implement the following function using only 2×1 multiplexers

$$
\begin{gathered}
f=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
=\bar{w}_{1}(\underbrace{w_{2} w_{3}})+w_{1}(\underbrace{w_{2}+w_{3}}) \\
\quad g=w_{2} w_{3} \quad h=w_{2}+w_{3}
\end{gathered}
$$

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
g=w_{2} w_{3}
$$

$$
h=w_{2}+w_{3}
$$

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
\begin{array}{cc}
g=w_{2} w_{3} & h=w_{2}+w_{3} \\
\downarrow=\bar{w}_{2}(0)+w_{2}\left(w_{3}\right) & h=\bar{w}_{2}\left(w_{3}\right)+w_{2}(1)
\end{array}
$$

Factor and implement the following function using only $\mathbf{2 x 1}$ multiplexers

$$
g=\bar{w}_{2}(0)+w_{2}\left(w_{3}\right)
$$

$$
h=\bar{w}_{2}\left(w_{3}\right)+w_{2}(1)
$$

Finally, we are ready to draw the circuit

Finally, we are ready to draw the circuit

Finally, we are ready to draw the circuit

[Figure 4.12 from the textbook]

Decoders

2-to-4 Decoder (Definition)

- Has two inputs: w_{1} and w_{0}
- Has four outputs: y_{0}, y_{1}, y_{2}, and y_{3}
- If $w_{1}=0$ and $w_{0}=0$, then the output y_{0} is set to 1
- If $w_{1}=0$ and $w_{0}=1$, then the output y_{1} is set to 1
- If $w_{1}=1$ and $w_{0}=0$, then the output y_{2} is set to 1
- If $w_{1}=1$ and $w_{0}=1$, then the output y_{3} is set to 1
- Only one output is set to 1 . All others are set to 0 .

Truth Table and Graphical Symbol for a 2-to-4 Decoder

w_{1}	w_{0}	y_{0}	y_{1}	y_{2}	y_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

(a) Truth table

(b) Graphical symbol

Truth Logic Circuit for a 2-to-4 Decoder

[Figure 4.13c from the textbook]

Adding an Enable Input

[Figure 4.13c from the textbook]

Adding an Enable Input

En

[Figure 4.13c from the textbook]

Truth Table and Graphical Symbol for a 2-to-4 Decoder with an Enable Input

En	w_{1}	w_{0}	y_{0}	y_{1}	y_{2}	y_{3}
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	x	x	0	0	0	0

(a) Truth table
(b) Graphical symbol

Truth Table and Graphical Symbol for a 2-to-4 Decoder with an Enable Input

En	w_{1}	w_{0}	y_{0}	y_{1}	y_{2}	y_{3}
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	x	x	0	0	0	0
(a) Truth table						

(b) Graphical symbol
x indicates that it does not matter what the value of this variable is for this row of the truth table

Graphical Symbol for a Binary n-to-2 ${ }^{\text {n }}$ Decoder with an Enable Input

(d) An n-to-2 ${ }^{n}$ decoder

A binary decoder with n inputs has 2^{n} outputs

The outputs of an enabled binary decoder are "one-hot" encoded, meaning that only a single bit is set to 1 , i.e., it is hot.
[Figure 4.14d from the textbook]

How can we build larger decoders?

- 3-to-8 ?
- 4-to-16?
- 5-to-??

Hint: How did we build a 16-1 Multiplexer

[Figure 4.4 from the textbook]

A 3-to-8 decoder using two 2-to-4 decoders

[Figure 4.15 from the textbook]

A 3-to-8 decoder using two 2-to-4 decoders

What is this?
[Figure 4.15 from the textbook]

What is this?

A 4-to-16 decoder built using a decoder tree

[Figure 4.16 from the textbook]

Let's build a
 5-to-32 decoder

Let's build a 5-to-32 decoder

Let's build a 5-to-32 decoder

Demultiplexers

1-to-4 Demultiplexer (Definition)

- Has one data input line: D
- Has two output select lines: w_{1} and w_{0}
- Has four outputs: y_{0}, y_{1}, y_{2}, and y_{3}
- If $w_{1}=0$ and $w_{0}=0$, then the output y_{0} is set to D
- If $w_{1}=0$ and $w_{0}=1$, then the output y_{1} is set to D
- If $w_{1}=1$ and $w_{0}=0$, then the output y_{2} is set to D
- If $w_{1}=1$ and $w_{0}=1$, then the output y_{3} is set to D
- Only one output is set to D. All others are set to 0 .

A 1-to-4 demultiplexer built with a 2-to-4 decoder

[Figure 4.14c from the textbook]

A 1-to-4 demultiplexer built with a 2-to-4 decoder

line

Multiplexers (Implemented with Decoders)

A 4-to-1 multiplexer built using a 2-to-4 decoder

[Figure 4.17 from the textbook]

Encoders

Binary Encoders

A $\mathbf{2}^{\text {n-to-n }}$ binary encoder

[Figure 4.18 from the textbook]

A 4-to-2 binary encoder

w_{3}	w_{2}	w_{1}	w_{0}	y_{1}	y_{0}
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table

(b) Circuit
[Figure 4.19 from the textbook]

A 4-to-2 binary encoder

w_{3}	w_{2}	w_{1}	w_{0}	y_{1}	y_{0}
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table

(b) Circuit
[Figure 4.19 from the textbook]

A 4-to-2 binary encoder

w_{3}	w_{2}	w_{1}	w_{0}	y_{1}	y_{0}
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table

(b) Circuit
[Figure 4.19 from the textbook]

Priority Encoders

Truth table for a 4-to-2 priority encoder

w_{3}	w_{2}	w_{1}	w_{0}	y_{1}	y_{0}	z
0	0	0	0	d	d	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	x	x	x	1	1	1

[Figure 4.20 from the textbook]

Questions?

THE END

