

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Registers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- The second midterm is next Friday.
- Homework 8 is due next Monday.

Administrative Stuff

- Midterm Exam \#2
- When: Friday October 28 @ 4pm.
- Where: This classroom
- What: Chapters 1, 2, 3, 4 and 5.1-5.8
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).

Midterm 2: Format

- The exam will be out of 130 points
- You need 95 points to get an A
- It will be great if you can score more than 100 points.
- but you can't roll over your extra points ${ }^{*}$

Midterm 2: Topics

- Binary Numbers and Hexadecimal Numbers
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adders and fast adders
- Single and Double precision IEEE floating point formats
- Converting a real number to the IEEE format
- Converting a floating point number to base 10
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem

Midterm 2: Topics

- Decoders (circuits and function)
- Demultiplexers
- Encoders (binary and priority)
- Code Converters
- K-maps for 2, 3, and 4 variables
- Synthesis of logic circuits using adders, multiplexers, encoders, decoders, and basic logic gates
- Synthesis of logic circuits given constraints on the available building blocks that you can use
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Registers and Register Files

Review of Flip-Flops

A simple memory element with NOT Gates

A simple memory element with NAND Gates

A simple memory element with NOR Gates

Basic Latch

A simple memory element with NOR Gates

A simple memory element with NOR Gates

A simple memory element with NOR Gates

A memory element with NOR gates

[Figure 5.3 from the textbook]

Two Different Ways to Draw the Same Circuit

[Figure $5.3 \& 5.4$ from the textbook]

SR Latch: Circuit and Truth Table

(a) Circuit

S	R	Q_{a}	Q_{b}	
0	0	$0 / 1$	$1 / 0$	(no change)
0	1	0	1	
1	0	1	0	
1	1	0	0	(Undesirable)

(b) Truth table
[Figure 5.4a,b from the textbook]

NOR Gate

NOR Gate Truth table

x_{1}	x_{2}	f
0	0	1
0	1	0
1	0	0
1	1	0

Gated SR Latch

Circuit Diagram for the Gated SR Latch

[Figure 5.5a from the textbook]

Circuit Diagram for the Gated SR Latch

This is the "gate"
of the gated latch

Circuit Diagram for the Gated SR Latch

Notice that these are complements of each other

Gated SR Latch: Circuit Diagram, Characteristic Table, and Graphical Symbol

Clk	S	R	$\mathrm{Q}(t+1)$
0	x	x	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x (Undesirable)

Gated SR latch with NAND gates

[Figure 5.6 from the textbook]

Gated SR latch with NAND gates

In this case the "gate" is
constructed using NAND
gates! Not AND gates.

Gated SR latch with NAND gates

Also, notice that the positions of S and R are now swapped.

Gated SR latch with NAND gates

Finally, notice that when $\mathrm{Clk}=1$ this turns into the basic latch with NAND gates, i.e., the $\bar{S} \bar{R}$ Latch.

Gated SR latch with NOR gates

Gated SR latch with NAND gates

Gated SR latch with NOR gates

Gated SR latch with NAND gates

Graphical symbols are the same

Gated SR latch with NOR gates

Gated SR latch with NAND gates

Clk	S	R	$\mathrm{Q}(t+1)$
0	x	x	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x (undesirable)

Characteristic tables are the same

Gated D Latch

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Gated D Latch: Alternative Design

Gated D Latch: Circuit Diagram, Characteristic Table, and Graphical Symbol

Note that it is now impossible to have $\mathrm{S}=\mathrm{R}=1$.
When $\mathrm{Clk}=1$ the output follows the D input.
When $\mathrm{Clk}=0$ the output cannot be changed.

[Figure 5.7a,b from the textbook]

Setup and hold times for Gated D latch

Setup time $\left(\mathrm{t}_{\mathrm{su}}\right)$ - the minimum time that the D signal must be stable prior to the the negative edge of the Clock signal

Hold time $\left(t_{h}\right)$ - the minimum time that the D signal must remain stable after the the negative edge of the Clock signal

Master-Slave D Flip-Flop

Constructing a Master-Slave D Flip-Flop From Two D Latches

Constructing a Master-Slave D Flip-Flop From Two D Latches

Constructing a Master-Slave D Flip-Flop From Two D Latches

Constructing a Master-Slave D Flip-Flop From Two D Latches

[Figure 5.9a from the textbook]

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)
Master
Slave

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)
Master
Slave

Edge-Triggered D Flip-Flops

Master-Slave D Flip-Flop

(a) Circuit

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

T Flip-Flop

T Flip-Flop

[Figure 5.15a from the textbook]

T Flip-Flop

[Figure 5.15a from the textbook]

T Flip-Flop

What is this?
[Figure 5.15a from the textbook]

What is this?

What is this?

T Flip-Flop

What is this?

T Flip-Flop

T Flip-Flop
 (circuit, truth table and graphical symbol)

[Figure 5.15a-c from the textbook]

T Flip-Flop
 (How it Works)

If $\mathbf{T}=\mathbf{0}$ then it stays in its current state

If $\mathrm{T}=1$ then it reverses its current state

In other words the circuit "toggles" its state when $\mathrm{T}=1$. This is why it is called T flip-flop.

JK Flip-Flop

JK Flip-Flop

[Figure 5.16a from the textbook]

JK Flip-Flop

(a) Circuit

J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$\overline{\mathrm{Q}}(\mathrm{t})$

(b) Truth table

(c) Graphical symbol
[Figure 5.16 from the textbook]

JK Flip-Flop (How it Works)

A versatile circuit that can be used both as a SR flip-flop and as a T flip flop

If $\mathrm{J}=0$ and $\mathrm{S}=0$ it stays in the same state

Just like SR It can be set and reset $J=S$ and $K=R$

If $\mathrm{J}=\mathrm{K}=1$ then it behaves as a T flip-flop

Registers

Register (Definition)

An n-bit structure consisting of flip-flops

Parallel-Access Register

1-Bit Parallel-Access Register

1-Bit Parallel-Access Register

The 2-to-1 multiplexer is used to select whether to load a new value into the D flip-flop or to retain the old value.

The output of this circuit is the \mathbf{Q} output of the flip-flop.

1-Bit Parallel-Access Register

If Load $=\mathbf{0}$, then retain the old value.
If Load = 1, then load the new value from In.

2-Bit Parallel-Access Register

2-Bit Parallel-Access Register

3-Bit Parallel-Access Register

Notice that all flip-flops are on the same clock cycle.

3-Bit Parallel-Access Register

4-Bit Parallel-Access Register

4-Bit Parallel-Access Register

Shift Register

A simple shift register

[Figure 5.17a from the textbook]

A simple shift register

Positive-edge-triggered
D Flip-Flop

A simple shift register

A simple shift register

(a) Circuit

	In	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{4}=$ Out
t_{0}	1	0	0	0	0
t_{1}	0	1	0	0	0
t_{2}	1	0	1	0	0
t_{3}	1	1	0	1	0
t_{4}	1	1	1	0	1
t_{5}	0	1	1	1	0
t_{6}	0	0	1	1	1
t_{7}	0	0	0	1	1

(b) A sample sequence

Parallel-Access Shift Register

Parallel-access shift register

[Figure 5.18 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

Register File

Register File

Gray lines are 1-bit signals
Black lines are 10 -bit signals

[http://fourier.eng.hmc.edu/e85_old/lectures/digital_logic/node19.html]

Register File

- Register file is a unit containing r registers
- r can be 4, 8, 16, 32, etc.
- Each register has \mathbf{n} bits
- n can be $4,8,16$, 32 , etc.
- n defines the data path width
- Output ports (DATA1 and DATA2) are used for reading the register file
- Any register can be read from any of the ports
- Each port needs a $\log _{2} r$ bits to specify the read
 address (RA1 and RA2)
- Input port (LD_DATA) is used for writing data to the register file
- Write address is also specified by $\log _{2} r$ bits (WA)
- Writing is enabled by a 1-bit signal (WR)

Register File: Exercise

- Suppose that a register file
- contains 32 registers
- width of data path is 16 bits (i.e., each register has 16 bits)
- How many bits are there for each of the signals?
- RA1
5
- RA2
5
- DATA1
16
- DATA2 16
- WA
5
- LD_DATA
16
- WR
1

Register file design

- We will design an eight-register file with 4-bit wide registers
- A single 4-bit register and its abstraction are shown below

- We have to use eight such registers to make an eight register file

- How many bits are required to specify a register address?

Reading Circuit

- A 3-bit register address, RA, specifies which register is to be read
- For each output port, we need one 8-to-1 4-bit multiplier

Adding write control to register file

- To write to any register, we need the register's address (WA) and a write register signal (WR)
- A 3-bit write address is decoded if write register signal is present
- One of the eight registers gets a LD signal from the decoder

Questions?

THE END

