

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Registers and Counters

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- The second midterm is this Friday.
- Homework 8 is due today.
- Homework 9 is out. It is due on Mon Nov 7.
- No HW due next Monday

Administrative Stuff

- Midterm Exam \#2
- When: Friday October 28 @ 4pm.
- Where: This classroom
- What: Chapters 1, 2, 3, 4 and 5.1-5.8
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).

Registers

Register (Definition)

An n-bit structure consisting of flip-flops

Parallel-Access Register

1-Bit Parallel-Access Register

1-Bit Parallel-Access Register

The 2-to-1 multiplexer is used to select whether to load a new value into the D flip-flop or to retain the old value.

The output of this circuit is the \mathbf{Q} output of the flip-flop.

1-Bit Parallel-Access Register

If Load $=\mathbf{0}$, then retain the old value.
If Load = 1, then load the new value from In.

2-Bit Parallel-Access Register

2-Bit Parallel-Access Register

3-Bit Parallel-Access Register

Notice that all flip-flops are on the same clock cycle.

3-Bit Parallel-Access Register

4-Bit Parallel-Access Register

4-Bit Parallel-Access Register

Shift Register

A simple shift register

[Figure 5.17a from the textbook]

A simple shift register

Positive-edge-triggered
D Flip-Flop

A simple shift register

Clock

A simple shift register

(a) Circuit

	In	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{4}=$ Out
t_{0}	1	0	0	0	0
t_{1}	0	1	0	0	0
t_{2}	1	0	1	0	0
t_{3}	1	1	0	1	0
t_{4}	1	1	1	0	1
t_{5}	0	1	1	1	0
t_{6}	0	0	1	1	1
t_{7}	0	0	0	1	1

(b) A sample sequence

Parallel-Access Shift Register

Parallel-access shift register

[Figure 5.18 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

Register File

Register File

Gray lines are 1-bit signals
Black lines are 10 -bit signals

[http://fourier.eng.hmc.edu/e85_old/lectures/digital_logic/node19.html]

Register File

- Register file is a unit containing r registers
- r can be 4, 8, 16, 32, etc.
- Each register has \mathbf{n} bits
- n can be $4,8,16$, 32 , etc.
- n defines the data path width
- Output ports (DATA1 and DATA2) are used for reading the register file
- Any register can be read from any of the ports
- Each port needs a $\log _{2} r$ bits to specify the read
 address (RA1 and RA2)
- Input port (LD_DATA) is used for writing data to the register file
- Write address is also specified by $\log _{2} r$ bits (WA)
- Writing is enabled by a 1-bit signal (WR)

Register File: Exercise

- Suppose that a register file
- contains 32 registers
- width of data path is 16 bits (i.e., each register has 16 bits)
- How many bits are there for each of the signals?
- RA1
5
- RA2
5
- DATA1
16
- DATA2 16
- WA
5
- LD_DATA
16
- WR
1

Register file design

- We will design an eight-register file with 4-bit wide registers
- A single 4-bit register and its abstraction are shown below

- We have to use eight such registers to make an eight register file

- How many bits are required to specify a register address?

Reading Circuit

- A 3-bit register address, RA, specifies which register is to be read
- For each output port, we need one 8-to-1 4-bit multiplier

Adding write control to register file

- To write to any register, we need the register's address (WA) and a write register signal (WR)
- A 3-bit write address is decoded if write register signal is present
- One of the eight registers gets a LD signal from the decoder

Counters

A three-bit up-counter

[Figure 5.19 from the textbook]

A three-bit up-counter

The first flip-flop changes
on the positive edge of the clock

A three-bit up-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes on the positive edge of $\overline{\mathrm{Q}}_{0}$

A three-bit up-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes The third flip-flop changes on the positive edge of $\overline{\mathrm{Q}}_{0} \quad$ on the positive edge of $\overline{\mathrm{Q}}_{1}$

A three-bit up-counter

(a) Circuit

(b) Timing diagram
[Figure 5.19 from the textbook]

A three-bit up-counter

(b) Timing diagram
[Figure 5.19 from the textbook]

A three-bit down-counter

[Figure 5.20 from the textbook]

A three-bit down-counter

(a) Circuit

(b) Timing diagram
[Figure 5.20 from the textbook]

Synchronous Counters

A four-bit synchronous up-counter

[Figure 5.21 from the textbook]

A four-bit synchronous up-counter

The propagation delay through all AND gates combined must not exceed the clock period minus the setup time for the flip-flops

A four-bit synchronous up-counter

(a) Circuit

(b) Timing diagram
[Figure 5.21 from the textbook]

Derivation of the synchronous up-counter

Clock cycle	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$				
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		
8	0	0	0	$\quad \square \quad$	Q_{1} changes
:---					
Q_{2} changes					

Derivation of the synchronous up-counter

Clock cycle	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	
0	$0 \quad 0 \quad 0$	Q_{1} changes
1	$\begin{array}{llll}0 & 0 & 1\end{array}$	- Q_{2} changes
2	$0 \quad 1 \quad 0 \longleftrightarrow$	
3	$\begin{array}{lll}0 & 1 & 1\end{array}$	
4	1000	
5	1001	
6	$110 \ll$	
7	111	
8	$0 \quad 0 \quad 0$	
$\mathrm{T}_{0}=1$		
$\mathrm{T}_{1}=\mathrm{Q}_{0}$		
$\mathrm{T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}$		

A four-bit synchronous up-counter

$$
\begin{aligned}
& \mathrm{T}_{0}=1 \\
& \mathrm{~T}_{1}=\mathrm{Q}_{0} \\
& \mathrm{~T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}
\end{aligned}
$$

[Figure 5.21 from the textbook]

In general we have

$$
\begin{aligned}
& \mathrm{T}_{0}=1 \\
& \mathrm{~T}_{1}=\mathrm{Q}_{0} \\
& \mathrm{~T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1} \\
& \mathrm{~T}_{3}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \\
& \ldots \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \ldots \mathrm{Q}_{\mathrm{n}-1}
\end{aligned}
$$

Adding Enable and Clear Capability

Inclusion of Enable and Clear capability

[Figure 5.22 from the textbook]

Inclusion of Enable and Clear capability

[Figure 5.22 from the textbook]

Providing an enable input for a D flip-flop

(a) Using a multiplexer

(b) Clock gating

Synchronous Counter with D Flip-Flops

A four-bit counter with D flip-flops

[Figure 5.23 from the textbook]

Counters with Parallel Load

A counter with parallel-load capability

[Figure 5.24 from the textbook]

Reset Synchronization

Motivation

- An n-bit counter counts from $0,1, \ldots, 2^{\mathbf{n}} \mathbf{- 1}$
- For example a 3-bit counter counts up as follow
- 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, ...
- What if we want it to count like this
- $0,1,2,3,4,5,0,1,2,3,4,5,0,1, \ldots$
- In other words, what is the cycle is not a power of 2 ?

What does this circuit do?

[Figure 5.25a from the textbook]

A modulo-6 counter with synchronous reset

[Figure 5.25 from the textbook]

A modulo-6 counter with asynchronous reset

(a) Circuit

(b) Timing diagram
[Figure 5.26 from the textbook]

A modulo-6 counter with asynchronous reset

(a) Circuit

(b) Timing diagram
[Figure 5.26 from the textbook]

Questions?

THE END

