

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Counters \& Solved Problems

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © 2013

Administrative Stuff

- Homework 9 is out
- It is due on Monday Nov 7, 2016

Counters

T Flip-Flop
 (circuit and graphical symbol)

[Figure 5.15a,c from the textbook]

The output of the T Flip-Flop divides the frequency of the clock by 2

A three-bit up-counter

[Figure 5.19 from the textbook]

A three-bit up-counter

The first flip-flop changes
on the positive edge of the clock

A three-bit up-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes on the positive edge of $\overline{\mathrm{Q}}_{0}$

A three-bit up-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes The third flip-flop changes on the positive edge of $\overline{\mathrm{Q}}_{0} \quad$ on the positive edge of $\overline{\mathrm{Q}}_{1}$

A three-bit up-counter

(a) Circuit

(b) Timing diagram
[Figure 5.19 from the textbook]

A three-bit up-counter

(b) Timing diagram
[Figure 5.19 from the textbook]

A three-bit down-counter

[Figure 5.20 from the textbook]

A three-bit down-counter

(a) Circuit

(b) Timing diagram
[Figure 5.20 from the textbook]

Synchronous Counters

A four-bit synchronous up-counter

[Figure 5.21 from the textbook]

A four-bit synchronous up-counter

The propagation delay through all AND gates combined must not exceed the clock period minus the setup time for the flip-flops

A four-bit synchronous up-counter

(a) Circuit

(b) Timing diagram
[Figure 5.21 from the textbook]

Derivation of the synchronous up-counter

Clock cycle	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$				
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		
8	0	0	0	$\quad \square \quad$	Q_{1} changes
:---					
Q_{2} changes					

Derivation of the synchronous up-counter

Clock cycle	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	
0	$0 \quad 0 \quad 0$	Q_{1} changes
1	$\begin{array}{llll}0 & 0 & 1\end{array}$	- Q_{2} changes
2	$0 \quad 1 \quad 0 \longleftrightarrow$	
3	$\begin{array}{lll}0 & 1 & 1\end{array}$	
4	1000	
5	1001	
6	$110 \ll$	
7	111	
8	$0 \quad 0 \quad 0$	
$\mathrm{T}_{0}=1$		
$\mathrm{T}_{1}=\mathrm{Q}_{0}$		
$\mathrm{T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}$		

A four-bit synchronous up-counter

$$
\begin{aligned}
& \mathrm{T}_{0}=1 \\
& \mathrm{~T}_{1}=\mathrm{Q}_{0} \\
& \mathrm{~T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}
\end{aligned}
$$

[Figure 5.21 from the textbook]

In general we have

$$
\begin{aligned}
& \mathrm{T}_{0}=1 \\
& \mathrm{~T}_{1}=\mathrm{Q}_{0} \\
& \mathrm{~T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1} \\
& \mathrm{~T}_{3}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \\
& \ldots \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \ldots \mathrm{Q}_{\mathrm{n}-1}
\end{aligned}
$$

Adding Enable and Clear Capability

Inclusion of Enable and Clear capability

[Figure 5.22 from the textbook]

Inclusion of Enable and Clear capability

[Figure 5.22 from the textbook]

Providing an enable input for a D flip-flop

(a) Using a multiplexer

(b) Clock gating

Synchronous Counter with D Flip-Flops

A four-bit counter with D flip-flops

[Figure 5.23 from the textbook]

Counters with Parallel Load

A counter with parallel-load capability

[Figure 5.24 from the textbook]

Reset Synchronization

Motivation

- An n-bit counter counts from $0,1, \ldots, 2^{\mathbf{n}} \mathbf{- 1}$
- For example a 3-bit counter counts up as follow
- 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, ...
- What if we want it to count like this
- $0,1,2,3,4,5,0,1,2,3,4,5,0,1, \ldots$
- In other words, what is the cycle is not a power of 2 ?

What does this circuit do?

[Figure 5.25a from the textbook]

A modulo-6 counter with synchronous reset

[Figure 5.25 from the textbook]

A modulo-6 counter with asynchronous reset

(a) Circuit

(b) Timing diagram
[Figure 5.26 from the textbook]

A modulo-6 counter with asynchronous reset

(a) Circuit

(b) Timing diagram
[Figure 5.26 from the textbook]

Other Types of Counters (Section 5.11)

A two-digit BCD counter

- 2: Parallel-load four-bit counter
- Figure 5.24
- Each counts in binary
- 0-9
- Resets generated on 9
- Reset by loading 0's
- Second digit enabled by a 9 on first counter

A two-digit BCD counter

[Figure 5.27 from the textbook]

A two-digit BCD counter

[Figure 5.27 from the textbook]

It is a counter with parallel-load capability

[Figure 5.24 from the textbook]

A two-digit BCD counter

Zeroing the BCD counter

Setting "Clear" to 1, zeroes both counters.

[Figure 5.27 from the textbook]

Zeroing the BCD counter

Setting "Clear" to 1, zeroes both counters.

[Figure 5.27 from the textbook]

How to zero a counter

Set all parallel load input lines to zero.

[Figure 5.24 from the textbook]

How to zero a counter

Set "Load" to 1, to open the "1" line of the multiplexers. Load 1

How to zero a counter

When the positive edge of the clock arrives, all outputs are set to zero together.

[Figure 5.24 from the textbook]

When Clear $=0$

 on the feedback connections.

Enabling the second counter

[Figure 5.27 from the textbook]

Enabling the second counter

Enabling the second counter

It is enabled only when the first counter is at 9 .

Enabling the second counter

- - -

Enabling the second counter

- - -

Enabling the second counter

0

Enabling the second counter

N -bit ring counter

- 1000, 0100, 0010, 0001, 1000.......
- Reset
- Set start to 1
- Sets output to 1000

N -bit ring counter

[Figure 5.28a from the textbook]

4-bit ring counter

- Use a 2-bit counter
- 00, 01, 10, 11, 00........
- 2-4 Decoder
- 1000, 0100, 0010, 0001, 1000........

4-bit ring counter

[Figure 5.28b from the textbook]

Johnson Counter

- 1-bit changes at a time
- 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000
- Begin with a reset of all flip-flops
- An n-bit Johnson counter has a counting sequence of length $2 n$

Johnson counter

[Figure 5.29 from the textbook]

Timing Analysis of Flip-Flop Circuits

 (Section 5.15)
Timing Review

- tsu: setup time
- th: hold time
- tcQ: propogation delay

Timing Example

- tsu: 0.6ns
- th: 0.4ns
- tcQ: 0.8ns to 1.0 ns
- Which value to use?

- Logic gate delay: 1+0.1k
- k is equal to the number of inputs
- Tmin = tsu + tcQ + tnot = $0.6+1.0+1.1=2.7 \mathrm{~ns}$
- $\operatorname{Fmax}=1 / \mathrm{Tmin}=370.37 \mathrm{MHz}$
- Check for hold violations
- Fastest Q can change $=$ tc $Q+$ tnot $=0.8+1.1=1.9 \mathrm{~ns}$
- $1.9 \mathrm{~ns} \boldsymbol{>} \mathbf{0 . 4 n s}$ therefore no hold violations

Timing Example: 4-bit counter

[Figure 5.67 from the textbook]

Timing Example: 4-bit counter

- Look for longest path
- Q0 to Q3
- Propagation delay of Q0
- 3 AND propagation delays
- 1 XOR propagation delay
- Setup delay for Q3
- $\operatorname{Tmin}=1.0+3(1.2)+1.2+0.6=6.4 n s$
- Fmax $=1 / 6.4 \mathrm{~ns}=156.25 \mathrm{MHz}$
- Check for hold violations
- Fastest Q can change $=\mathrm{tcQ}+\mathrm{tXOR}=0.8+1.2=2 \mathrm{~ns}$
- $2.0 \mathrm{~ns}>0.4 \mathrm{~ns}$ therefore no hold violations

Timing Example: Clock Skew

Figure 5.68. A general example of clock skew.

Skew Timing Example: 4-bit counter

- Q3 now has a clock slew delay: 1.5 ns
- $\mathrm{T}=1.0+3(1.2)+1.2+0.6-1.5=4.9 \mathrm{~ns}$
- Now might not be the longest path
- Check Q0 to Q2
- $\mathrm{T}=1.0+2(1.2)+1.2+0.6=5.2 \mathrm{~ns}$
- $\operatorname{Fmax}=1 / 5.2 \mathrm{~ns}=192.31 \mathrm{MHz}$

Example 5.22

Faster 4-bit Counter

- Want to increase the speed of the 4-bit counter
- Use similar method as used in 4-bit adder
- Remove series AND gates

A faster 4-bit counter

[Figure 5.75 from the textbook]

Faster 4-bit Counter

- Longest path: Q0 to Q3
- Tmin = tcQ0 + tAND + tXOR + tsu
- $=1.0+1.4+1.2+0.6=4.2 \mathrm{~ns}$
- $\operatorname{Fmax}=1 / 4.2 \mathrm{~ns}=238.1 \mathrm{MHz}>156.25 \mathrm{MHz}$

Reaction Timer Circuit (Section 5.14)

Problem Statement

- Want to design a reaction timer
- Circuit turns on light (LED)
- Person then presses switch
- Measures time from LED on until the switch is pressed

Clock Divider

- Input: 102.4 kHz
- Output: 100Hz
- 10-bit Counter to divide
- Output Frequency $=102.4 \mathrm{k} / \mathbf{2}^{\wedge} 10=100 \mathrm{~Hz}$

A reaction-timer circuit

(a) Clock divider
(b) LED circuit

Functionality of circuit

- Push switch
- Nominally 1
- DFF to keep track of the state
- Two-digit BCD counter
- Output goes to converters to a 7-segment display
- Start-up
- Assert the Reset signal
- Clears counter
- Clears flip-flop
- Assert w=1 for one cycle
- Once switch is hit
- Clears flip-flop
- Stops counting

Push-button switch, LED, and 7-segment displays

[Figure 5.61c from the textbook]

Examples of Solved Problems (Section 5.17)

Example 5.18

(a) Circuit

(b) Timing diagram

Figure 5.70. Circuit for Example 5.18.

Example 5.19

Figure 5.71. Circuit for Example 5.19.

\mathbf{J}	\mathbf{K}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	
0	0	$Q^{(t)}$	No Change
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(t)$	Complement

Time interval	FF0			FF 1		
	J_{0}	K_{0}	Q_{0}	J_{1}	K_{1}	Q_{1}
Clear	1	1	0	0	1	0
t_{1}	1	1	1	1	1	0
t_{2}	0	1	0	0	1	1
t_{3}	1	1	0	0	1	0
t_{4}	1	1	1	1	1	0

Figure 5.72. Summary of the behavior of the circuit in Figure 5.71.

Example 5.20

Vending machine example

- Inputs N, D, Q, Coin, Resetn
- N, D, Q: nickel, dime, quarter
- Coin: pulsed when a coin is entered
- Used to store values into register
- Resetn: resets the register value to zero
- Add up new coin with old value
- Store new sum into old value register
- See if total is above thirty cents
- If so output Z goes high

Circuit for Example 5.20

[Figure 5.73 from the textbook]

Questions?

THE END

