

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

State Assignment Problem

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 9 is due on Monday

Administrative Stuff

- Homework 10 is out
- It is due on Monday Nov 14 @ 4pm

Quick Review

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Moore Machine

- The machine's current state and current inputs are used to decide which next state to transition into.
- The machine's current state decides the current output.

Mealy Machine

- The machine's current state and current inputs are used to decide which next state to transition into.
- The machine's current state and current input values decide the current output.

Example \#1

We need to find both the next state logic and the output logic implied by this machine.
[Figure 6.3 from the textbook]

Present state	Next state		Output
	$w=0 \quad w=1$		
A			
B			
C			

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

[Figure 6.4 from the textbook]

How to represent the States?

One way is to encode each state with a 2-bit binary number

$$
\begin{aligned}
& A \sim 00 \\
& B \sim 01 \\
& C \sim 10
\end{aligned}
$$

How to represent the states?

One way is to encode each state with a 2-bit binary number

$$
\begin{aligned}
& A \sim 00 \\
& B \sim 01 \\
& C \sim 10
\end{aligned}
$$

How many flip-flops do we need?

Let's use two flip flops
 to hold the state of this machine

Clock

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

Clock

Two zeros on the output JOINTLY represent state A.

Clock

This flip-flop output pattern represents state B.

Clock

This flip-flop output pattern represents state C.

Clock

What does this flip-flop output pattern represent?

Clock

This would be state D, but we don't have one in this example. So this is an impossible state.

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

$$
Q(t+1)=Y_{2} Y_{1} \quad Q(t)=y_{2} y_{1}
$$

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

We need to find logic expressions for $Y_{1}\left(w, y_{1}, y_{2}\right), Y_{2}\left(w, y_{1}, y_{2}\right)$, and $z\left(y_{1}, y_{2}\right)$.
[Figure 6.5 from the textbook]

> We need to find logic expressions for $Y_{1}\left(w, y_{1}, y_{2}\right), Y_{2}\left(w, y_{1}, y_{2}\right)$, and $z\left(y_{1}, y_{2}\right)$.
[Figure 6.5 from the textbook]

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose that we encoded our states in the same order in which they were labeled:

$$
\begin{aligned}
& A \sim 00 \\
& B \sim 01 \\
& C \sim 10
\end{aligned}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

The finite state machine will
never reach a state encoded as 11.
[Figure 6.6 from the textbook]

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

[Figure 6.6 from the textbook]

Present state	Next state		
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	
0	1	
1	0	
1	1	

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state $y_{2}^{y_{1}}$	Next state		Output
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11		$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

Present state	Next state		
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11		$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state $y_{2}^{y_{1}}$	Next state		Output z
	$w=0$	$v=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11		$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state $y_{2}^{y_{1}}$	Next state		Output
	$w=0$	$v=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

Note that the textbook draws these K-Maps differently from all previous K-maps (the least significant bits index the columns, instead of the most significant bits).

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

Don't care conditions simplify the combinatorial logic

Ignoring don't cares

$$
Y_{1}=w \bar{y}_{1} \bar{y}_{2}
$$

$$
Y_{2}=w y_{1} \bar{y}_{2}+\bar{w} y_{1} y_{2}
$$

$$
z=\bar{y}_{1} y_{2}
$$

Using don't cares

$$
Y_{1}=w \bar{y}_{1} \bar{y}_{2}
$$

$$
\begin{aligned}
Y_{2} & =w y_{1}+w y_{2} \\
& =w\left(y_{1}+y_{2}\right)
\end{aligned}
$$

$$
z=y_{2}
$$

[Figure 6.8 from the textbook]

[Figure 6.8 from the textbook]

Finally, we add a
reset signal.
When it is equal
to zero it puts the
machine back to
its start state,
which is state 00
in this case.

[Figure 6.8 from the textbook]

Finally, we add a
reset signal.
When it is equal
to zero it puts the
machine back to
its start state,
which is state 00
in this case.

[Figure 6.8 from the textbook]

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$

$$
z: \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0
$$

[Figure 6.9 from the textbook]

Summary: Designing a Moore Machine

- Obtain the circuit specification
- Derive a state diagram
- Derive the state table
- Decide on a state encoding
- Encode the state table
- Derive the output logic and next-state logic
- Draw the Circuit Diagram
- Add a reset signal

An Alternative State Encoding
 For Example \#1

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$
\begin{aligned}
& \mathrm{A} \sim 00 \\
& \mathrm{~B} \sim 01 \\
& \mathrm{C} \sim 11
\end{aligned}
$$

Clock

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

Clock

Two zeros on the output JOINTLY represent state A.

Clock

This flip-flop output pattern represents state B.

Clock

This flip-flop output pattern represents state C.

Clock

What does this flip-flop output pattern represent?

Clock

This would be state D, but we don't have one in this example. So this is an impossible state.

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$
\begin{aligned}
& \mathrm{A} \sim 00 \\
& \mathrm{~B} \sim 01 \\
& \mathrm{C} \sim 11
\end{aligned}
$$

A Better State Encoding

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Present state	Next state		Output
	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	
B	00	00	01
C	01	00	11
11	00	11	0
		1	
10	$d d$	$d d$	d

Let's Derive the Logic Expressions

Present state	Next state		Output
	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01
B	01	00	11
C	11	00	0
10	$d d$	$d d$	1

Let's Derive the Logic Expressions

		Present state $y_{2} y_{1}$	Next state		Output z
			$w=0$	$w=1$	
Warning: This table does not enumerate $y_{2} y_{1}$, in the standard way, so be careful when filling out the K-Map.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
		00	00	01	0
		01	00	11	0
		11	00	11	1
		10	$d d$	$d d$	d

Y_{2}

Let's Derive the Logic Expressions

		Present state	Next state		Output z
			$w=0$	$w=1$	
Warning: This table does not enumerate $y_{2} y_{1}$, in the standard way, so be careful when filling out the K-Map.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
		00	00	01	0
		01	00	11	0
		11	00	11	1
		10	$d d$	$d d$	d

$$
Y_{2}\left(w, y_{2}, y_{1}\right)=w y_{1}
$$

$Y_{1}\left(w, y_{2}, y_{1}\right)=w$

$z\left(y_{2}, y_{1}\right)=y_{2}$

Original State
Encodings

New State
Encodings

The New and Improved Circuit Diagram

$$
\begin{aligned}
Y_{1}\left(w, y_{2}, y_{1}\right) & =w \\
Y_{2}\left(w, y_{2}, y_{1}\right) & =w y_{1} \\
z\left(y_{2}, y_{1}\right) & =y_{2}
\end{aligned}
$$

[Figure 6.17 from the textbook]

Main Idea

Different state assignments of the same Moore machine generally lead to different circuits.

Some may be better than others.

Example \#2

Register Swap Controller

[Figure 6.10 from the textbook]

Register Swap Controller

Design a Moore machine control circuit for swapping the contents of registers R1 and R2 by using R3 as a temporary.
[Figure 6.10 from the textbook]

State Diagram

[Figure 6.11 from the textbook]

Animated Register Swap

Animated Register Swap

These are the original values of the 8-bit registers

Animated Register Swap

For clarity, only inputs that are equal to 1 will be shown.

Animated Register Swap

State Diagram

[Figure 6.11 from the textbook]

Some Questions

- How many flip-flops are we going to use?
- How many logic expressions do we need to find?

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2{ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A									
B									
C									
D									

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

As we saw before, we can expect that some state encodings will be better than others.

We will consider three encoding schemes.

Encoding \#1: $A=00, B=01, C=10, D=11$

(Uses Two Flip-Flops)

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R1}$ out	$\mathrm{R1} 1_{\text {in }}$	R_{2} out	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

Present state$y_{2} y_{1}$	Next state		Outputs						
	$w=0$	$w=1$							
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3{ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done

[Figure $6.12 \& 6.13$ from the textbook]

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R1}$ out	$\mathrm{R1} 1_{\text {in }}$	R_{2} out	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R}_{2} \mathrm{in}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	00									
B	01									
C	10									
D	11									

[Figure $6.12 \& 6.13$ from the textbook]

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R1}$ out	$\mathrm{R1} 1_{\text {in }}$	R_{2} out	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

[Figure $6.12 \& 6.13$ from the textbook]

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{2 \text { out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{2}{ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

[Figure $6.12 \& 6.13$ from the textbook]

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Let's derive the next-state expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0 \quad w=1$								
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}$ out	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

$$
\begin{aligned}
& Y_{2} \\
& y_{2} \\
& y^{y_{2}} y_{1} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1} \mathrm{out}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0 \quad w=1$								
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions
We need to derive only these 3 unique ones

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0	0	0	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0	0	0	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

$$
\begin{aligned}
& \mathrm{R} 1_{\text {out }}=\mathrm{R} 2_{\text {in }}=\bar{y}_{1} \mathrm{y}_{2} \\
& \mathrm{R} 1_{\text {in }}=\mathrm{R} 3_{\text {out }}=\text { Done }=\mathrm{y}_{1} \mathrm{y}_{2} \\
& \mathrm{R} 2_{\text {out }}=\mathrm{R} 3_{\text {in }}=\mathrm{y}_{1} \bar{y}_{2}
\end{aligned}
$$

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2{ }_{\text {in }}$	$\mathrm{R} 3{ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

$$
Y_{1}=w \bar{y}_{1}+\bar{y}_{1} y_{2}
$$

$$
Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}
$$

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R 3 out	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

Encoding \#2: $A=00, B=01, C=11, D=10$

(Also Uses Two Flip-Flops)

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R 3 out	$R 3_{\text {in }}$	Done
$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$										

[Figure $6.12 \& 6.18$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2{ }_{\text {out }}$	R 2 in	R 3 out	$R 3_{\text {in }}$	Done
A	00									
B	01									
C	11									
D	10									

[Figure $6.12 \& 6.18$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R2} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01							
B	01	11	11							
C	11	10	10							
D	10	00	00							

[Figure $6.12 \& 6.18$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R_{2} out	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	R_{3} in	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

[Figure $6.12 \& 6.18$ from the textbook]

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	R 2 in	R 3 out	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Let's derive the next-state expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R}^{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions
Once again, we only need to derive these three unique ones.

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R3}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

	y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
A	0	0	0		
B	0	1	0		
D	1	0	0		
C	1	1	1		

Note that C and D are swapped in the truth table due to the new state encoding that was chosen.

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0 \quad w=1$								
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R1}_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

	y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
A	0	0	0	0	0
B	0	1	0	0	1
D	1	0	0	1	0
	1	1	1	0	0
	1				

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$v=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3{ }_{\text {out }}$	$R 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

	y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
A	0	0	0	0	0
B	0	1	0	0	1
D	1	0	0	1	0
	1	1	1	0	0
	1				

$$
\begin{aligned}
& R 1_{\text {out }}=R 2_{\text {in }}=y_{1} y_{2} \\
& R 1_{\text {in }}=R 3_{\text {out }}=\text { Done }=\overline{y_{1}} y_{2} \\
& R 2_{\text {out }}=R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

Let's Complete the Circuit Diagram

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{2}+y_{1} \overline{y_{2}} \\
& Y_{2}=y_{1}
\end{aligned}
$$

$$
\begin{aligned}
R 1_{\text {out }} & =R 2_{\text {in }}=y_{1} y_{2} \\
R 1_{\text {in }} & =R 3_{\text {out }}=\text { Done }=\overline{y_{1}} y_{2} \\
R 2_{\text {out }} & =R 3_{\text {in }}=y_{1} \overline{y_{2}}
\end{aligned}
$$

Encoding \#3: $A=0001, B=0010, C=0100, D=1000$

(One-Hot Encoding - Uses Four Flip-Flops)

One-Hot State Encoding

- So far, we have been encoding states in a way that minimizes the number of flip-flops.
- But sometimes we can decrease the complexity of our logic if we encode states more sparsely.

Encoding for State A

Encoding for State \mathbf{B}

Encoding for State C

Encoding for State D

Register Swap Controller

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Register Swap Controller

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Let's use four flip-flops and the following one-hot state encoding scheme:

$$
\begin{aligned}
& A=0001 \\
& B=0010 \\
& C=0100 \\
& D=1000
\end{aligned}
$$

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R}^{\text {out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$ in	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y^{\prime}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{Rl}_{1 \text { in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2 \mathrm{in}_{\text {in }}$	$\mathrm{R3}_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A B C D										

[Figure $6.12 \& 6.21$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R}_{\text {out }}{\mathrm{R} 1_{\text {in }}} \mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	R_{3} in	Done		
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	$\begin{aligned} & \text { Present } \\ & \text { State } \\ & y_{4} y_{3} y_{2} y_{1} \end{aligned}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R}_{2}{ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R3}_{\text {in }}$	Done
A	0001									
B	0010									
C	0100									
D	1000									

[Figure $6.12 \& 6.21$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R}_{\text {out }}$	$\mathrm{R1}_{\text {in }}$	$\mathrm{R}^{\text {out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	$\begin{gathered} \text { Present } \\ \text { State } \\ y_{4} y_{3} y_{2} y_{1} \end{gathered}$	Next State		Outputs						
		$w=0 \quad w=1$								
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R3}_{\text {out }}$	R 3 in	Done
A	0001	0001	0010							
B	0010	0100	0100							
C	0100	1000	1000							
D	1000	0001	0001							

[Figure $6.12 \& 6.21$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R}_{\text {out }}$	$\mathrm{R1}_{\text {in }}$	$\mathrm{R}^{\text {out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0 \quad w=1$								
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	R 3 in	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

[Figure $6.12 \& 6.21$ from the textbook]

Let's Derive the Next-State Expressions

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Next-State Expressions

$$
\begin{aligned}
& Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)
\end{aligned}
$$

We need to do four 5 -variable K-maps!

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2{ }_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Next-State Expressions

$$
\begin{aligned}
& Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=\bar{w} y_{1}+y_{4} \\
& Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1} \\
& Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} \\
& Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3}
\end{aligned}
$$

Or we can be smarter than that (\cdot)

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2{ }_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Output Expressions

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R 3 out	R 3 in	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Output Expressions

$$
\begin{aligned}
& \mathrm{R} 1_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} 1_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} 2_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} \text { in }\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} 3_{\text {out }}^{4}, \\
& \mathrm{R}_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \operatorname{Done}_{2}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)
\end{aligned}
$$

We need to do seven 4-variable K-maps!

	$\begin{gathered} \text { Present } \\ \text { State } \\ y_{4} y_{3} y_{2} y_{1} \end{gathered}$	Next State		Outputs						
		$w=0 \quad w=1$								
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R}_{2}{ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Output Expressions

$$
\begin{aligned}
& \mathrm{R} 1_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} \\
& \mathrm{R} 1_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4} \\
& \mathrm{R} \mathrm{o}_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} \\
& \mathrm{R} \text { in }\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} \\
& \mathrm{R} 3_{\text {out }}^{4}, \\
& \left.\left.\mathrm{R}_{3}, y_{2}, y_{1}\right)=y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} \\
& \operatorname{Done}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4}
\end{aligned}
$$

Or we can be smarter than that by exploiting the one-hot property

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Complete the Circuit Diagram

Questions?

THE END

