

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Mealy State Model

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 10 is out
- It is due on Monday Nov 14 @ 4pm

Administrative Stuff

Final Project

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Sample Problem

Implement a 11 detector. In other words, the output should be equal to 1 if two consecutive 1's have been detected on the input line. The output should become 1 as soon as the second 1 is detected in the input.

Clock cycle: w:	t ₀	t_1	t_2	t3	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
<i>w</i> :	0	1	0	1	1	0	1	1	1	0	1
											0

Clock cycle: input w:	t ₀	t_1	t_2	t3	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :											

Clock cycle: input w:	t ₀	t_1	t_2	t3	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :	0	0	0	0	1	0	0	1	1	0	0

Clock cycle:	t_0	t_1	t_2	t3	t4	t5			t ₈		
input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :											0

Clock cycle:	t_0	t_1	t_2	t ₃	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
Clock cycle: input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :	0	0	0	0	1	0	0	1	1	0	0

Clock cycle:	t_0	t_1	t_2	t ₃	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :	0	0	0	0	1	0	0	1	1	0	0

Clock cycle:	t_0	t_1	t_2	t ₃	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :											

Clock cycle:	t_0	t_1	t_2	t3	t4	t5	t ₆	t7	t ₈	t9	t ₁₀
Clock cycle: input w:	0	1	0	1	1	0	1	1	1	0	1
output _z :											

State diagram of an FSM that realizes the task

[Figure 6.23 from the textbook]

Now Let's Do the State Table for this FSM

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A				
В				

Now Let's Do the State Table for this FSM

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	<i>w</i> = 1
A	А	В	0	0
B	A	В	0	1

The State Table for this FSM

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	<i>w</i> = 1
A	А	В	0	0
B	A	В	0	1

Let's Do the State-assigned Table

Present	Next state		Output z	
state	w = 0 $w = 1$		w = 0	w = 1
А	А	В	0	0
В	A	В	0	1

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	У	Y	Y	Z	Z.
A	0				
B	1				

Let's Do the State-assigned Table

Present	Next state		Output z	
state	w = 0 $w = 1$		w = 0	w = 1
А	А	В	0	0
В	A	В	0	1

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	У	Y	Y	Z	Z.
A	0	0	1	0	0
B	1	0	1	0	1

The State-assigned Table

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	<i>w</i> = 1
	У	Y	Y	Z	Z.
A	0	0	1	0	0
В	1	0	1	0	1

The State-assigned Table

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	<i>w</i> = 1
	У	Y	Y	Z	Z
A	0	0	1	0	0
B	1	0	1	0	1

$$Y = D = w$$
 $z = wy$

[Figure 6.25 from the textbook]

The State-assigned Table

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	У	Y	Y	Z	Z
A	0	0	1	0	0
В	1	0	1	0	1

Y = D = w z = wy

This assumes D flip-flop

[Figure 6.25 from the textbook]

Circuit Implementation of the FSM

$$Y = D = w$$
 $z = wy$

[Figure 6.26 from the textbook]

Circuit & Timing Diagram

What if we wanted the output signal to be delayed by 1 clock cycle?

Circuit Implementation of the Modified FSM

[Figure 6.27a from the textbook]

Circuit Implementation of the Modified FSM

This flip-flop delays the output signal by one clock cycle

[Figure 6.27a from the textbook]

We Have Seen This Diagram Before

[Figure 6.17 from the textbook]

Circuit & Timing Diagram

(a) Circuit

[[] Figure 6.27 from the textbook]

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Moore

Mealy

Mealy

Notice that the output of the Moore machine is delayed by one clock cycle

Questions?

THE END