

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Mealy State Model

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 10 is out
- It is due on Monday Nov 14 @ 4pm

Administrative Stuff

- Final Project

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Sample Problem

Implement a 11 detector. In other words, the output should be equal to 1 if two consecutive 1's have been detected on the input line. The output should become 1 as soon as the second 1 is detected in the input.

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
1											
output	$z:$	0	0	0	0	1	0	0	1	1	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input $w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	z	0	0	0	0	1	0	0	1	1	0

Sequences of input and output signals

Clock cycle:	\mathfrak{t}_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	\mathfrak{t}_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	z	0	0	0	0	1	0	0	1	1	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0	

State diagram of an FSM that realizes the task

[Figure 6.23 from the textbook]

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input $w: \square$	\square	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input $w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input $w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:		t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	z	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:		t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	z	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	z	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	z	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0	

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0	

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0	

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
1											
output	$z:$	0	0	0	0	1	0	0	1	1	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
1											
output	z	0	0	0	0	1	0	0	1	1	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
1											
output	$z:$	0	0	0	0	1	0	0	1	1	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	\mathfrak{t}_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output $z:$	0	0	0	0	1	0	0	1	1	0	0	

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
1											
output	$z:$	0	0	0	0	1	0	0	1	1	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	\mathfrak{t}_{8}	t_{9}	\mathfrak{t}_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	01
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Now Let's Do the State Table for this FSM

Present state	Next state	Output z
	$w=0 \quad w=1$	$w=0 \quad w=1$
A		
B		

Now Let's Do the State Table for this FSM

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

The State Table for this FSM

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

[Figure 6.24 from the textbook]

Let's Do the State-assigned Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

Present state	Next state		Output	
	$w=0 \quad w=1$	$w=0$	$w=1$	
y	Y	Y	z	z
	2 1			

Let's Do the State-assigned Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
	0	0	1	0

The State-assigned Table

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
A	0	0	1	0

[Figure 6.25 from the textbook]

The State-assigned Table

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
A	0	0	1	0

$$
\mathrm{Y}=\mathrm{D}=\mathrm{w} \quad \mathrm{z}=\mathrm{w} \mathrm{y}
$$

[Figure 6.25 from the textbook]

The State-assigned Table

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
A	0	0	1	0

This assumes D flip-flop
[Figure 6.25 from the textbook]

Circuit Implementation of the FSM

[Figure 6.26 from the textbook]

Circuit \& Timing Diagram

(a) Circuit

(b) Timing diagram
[Figure 6.26 from the textbook]

What if we wanted the output signal to be delayed by 1 clock cycle?

Circuit Implementation of the Modified FSM

[Figure 6.27a from the textbook]

Circuit Implementation of the Modified FSM

This flip-flop delays the output signal by one clock cycle
[Figure 6.27a from the textbook]

We Have Seen This Diagram Before

$$
\begin{aligned}
Y_{1}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right) & =w \\
Y_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right) & =w y_{1} \\
z\left(\mathrm{y}_{2}, \mathrm{y}_{1}\right) & =y_{2}
\end{aligned}
$$

[Figure 6.17 from the textbook]

Circuit \& Timing Diagram

(a) Circuit

[Figure 6.27 from the textbook]

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Moore

Mealy

Moore

Notice that the output of the Moore machine is delayed by one clock cycle

Questions?

THE END

