

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Analysis of Synchronous Sequential Circuits

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 11 is due on Nov 28

Administrative Stuff

- Final Project (7\% of your grade)
- By now you should have selected a project
- Also, posted on the class web page (Labs section)
- This is your lab for the last two weeks
- This is due during your last lab (dead week)

Administrative Stuff

- Final Project: Stack Arithmetic problem
- If you picked that one, then you can ignore the issues with arithmetic overflow and with negative numbers.
- Simply assume that the test cases will not test for that.

Goal for Today's Lecture

- Given a circuit diagram for a synchronous sequential circuit, the goal is to figure out the FSM
- Figure out the present state variables, the next state variables, the state-assigned table, the state table, and finally the state diagram.
- In other words, the goal is to reverse engineer the circuit.

What does this circuit do?

[Figure 6.75 from the textbook]

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Where are the inputs?

[Figure 6.75 from the textbook]

Where are the inputs?

[Figure 6.75 from the textbook]

Where are the outputs?

[Figure 6.75 from the textbook]

Where are the outputs?

[Figure 6.75 from the textbook]

Where kind of machine is this? Moore or Mealy?

Moore: because the output does not depend directly on the primary input

Where are the memory elements?

Where are the memory elements?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the present-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

These are the next-state variables

What are their logic expressions?

What are their logic expressions?

$$
Y_{1}=w \bar{y}_{1}+w y_{2}
$$

Where is the output, again?

Where is the output, again?

What is its logic expression?

What is its logic expression?

This is what we have to work with now (we don't need the circuit anymore)

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the state-assigned table

$$
\begin{aligned}
Y_{1} & =w \bar{y}_{1}+w y_{2} \\
Y_{2} & =w y_{1}+w y_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output Z
	$\mathrm{w}=0$	$w=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00			
01			
10			
11			

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	Output
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	Z
00			
01			
10			
11			

Let's derive the state-assigned table

$$
\begin{aligned}
Y_{1} & =w \bar{y}_{1}+w y_{2} \\
Y_{2} & =w y_{1}+w y_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State	Output Z
	$w=0 \quad w=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1} \quad \mathrm{Y}_{2} \mathrm{Y}_{1}$	
00		0
01		0
10		0
11		1

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state $\mathrm{y}_{2} \mathrm{Y}_{1}$	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	Output
	Y	Y_{1}	Y
0	Y_{1}	z	
0			0
01		0	
10		0	
11		1	

Let's derive the state-assigned table

$$
\begin{aligned}
Y_{1} & =w \bar{y}_{1}+w y_{2} \\
Y_{2} & =w y_{1}+w y_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$\mathrm{w}=0$	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$Y_{2} Y_{1}$	
00	0	1	0
01	0	0	0
10	0	1	0
11	0	1	1

Let's derive the state-assigned table

$$
\begin{aligned}
& \mathrm{Y}_{1}=\mathrm{wy}_{1}+\mathrm{wy}_{2} \\
& \mathrm{Y}_{2}=\mathrm{wy}_{1}+\mathrm{wy}_{2}
\end{aligned}
$$

$$
\mathrm{z}=\mathrm{y}_{1} \mathrm{y}_{2}
$$

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	w = 0	w = 1	
	Y) r_{1}	(Y2) r_{1}	
00	0	1	0
01	0	0	0
10	0	1	0
11	0	1	1

Let's derive the state-assigned table

$$
\begin{aligned}
Y_{1} & =w \bar{y}_{1}+w y_{2} \\
Y_{2} & =w y_{1}+w y_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

$\begin{gathered} \text { Present } \\ \text { state } \\ \mathrm{y}_{2} \mathrm{y}_{1} \end{gathered}$	Next State		Output z
	$\mathrm{w}=0$	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

We don't need the logic expressions anymore

$$
\begin{aligned}
Y_{1} & =w \bar{y}_{1}+w y_{2} \\
Y_{2} & =w y_{1}+w y_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	w = 0	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

We don't need the logic expressions anymore

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
Y	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	Z	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

Let's derive the state table

State table

Presen state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$\mathrm{w}=0$	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

State table

Presen state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$\mathrm{w}=0$	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

Present state	Next state	Output z	Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next	State	Output z
	$w=0 \quad w=1$			w = 0	$\mathrm{w}=1$	
A				$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
B			-00	00	01	0
$\mathrm{D} \stackrel{ }{4}$			-01	00	10	0
			-10	00	11	0
			-11	00	11	1

State table
State-assigned table

Let's derive the state table

State table

$\begin{gathered} \text { Present } \\ \text { state } \\ \mathrm{y}_{2} \mathrm{y}_{1} \end{gathered}$	Next State		Output z
	w = 0	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

Present state	Next state	Output z	Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$w=0 \quad w=1$			w = 0	w = 1	
A	$\left(\begin{array}{l}A \\ A \\ A \\ A\end{array}\right) \leftarrow$			$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
B			00	00	01	0
D			01	- 00	10	0
			10	00	11	0
			11	00	11	1

State table
State-assigned table

Let's derive the state table

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A		
B	A		
C	A		
D	A		

State table

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
Z	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

Present state	Next state		Output z	Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$\mathrm{w}=0$	$w=1$			w = 0	w = 1	
A	A	$\left(\begin{array}{l} B \\ C \\ D \\ D \end{array}\right)$			$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
B	A			00	00		
C				01	00	10	0
D				10	00	11	0
				11		11	1

State table
State-assigned table

Let's derive the state table

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	
B	A	C	
C	A	D	
D	A	D	

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
Y	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State table
State-assigned table

Let's derive the state table

Present state	Next state		Output z
	$\mathrm{w}=1$		
A	A	B	
B	A	C	
C	A	D	
D	A	D	

State table

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	Output $\mathrm{Y}_{2} \mathrm{Y}_{1}$
z	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

The output is the same in both tables

The two tables for the initial circuit

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

We don't need the state-assigned table anymore

Present state	Next state		Output z
	$\mathrm{w}=1$	B	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

Presen state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output z
	$\mathrm{w}=0$	w = 1	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

We don't need the state-assigned table anymore

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

Let's Draw the State Diagram

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	0	
B	A	C	0
C	A	D	0
D	A	D	1

Let's Draw the State Diagram

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Because this is a Moore machine the output is tied to the state

Let's Draw the State Diagram

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	0	
B	A	C	0
C	A	D	0
D	A	D	1

All transitions when the input w is equal to 1

Let's Draw the State Diagram

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	0	
B	A	C	0
C	A	D	0
D	A	D	1

All transitions when the input w is equal to 1

Let's Draw the State Diagram

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	B	0	
B	A	C	0
C	A	D	0
D	A	D	1

All transitions when the input w is equal to 0

Let's Draw the State Diagram

Present state	Next state		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	0	
B	A	C	0
C	A	D	0
D	A	D	1

All transitions when the input w is equal to 0

We are done!

State diagram

Almost done. What does this FSM do?

Present state	Next state		Output Z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	0	
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

Almost done. What does this FSM do?

It sets the output z to 1 when three consecutive 1's occur on the input w. In other words, it is a sequence detector for the input pattern 111.

Present state	Next state		Output z
	$\mathrm{w}=1$	B	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

Another Example (with JK flip-flops)

What does this circuit do?

[Figure 6.77 from the textbook]

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Where are the inputs and outputs?

[Figure 6.77 from the textbook]

Where are the inputs and outputs?

What kind of machine is this?

Where are the flip-flops?

Where are the flip-flops?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the next-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

What are their logic expressions?

What are their logic expressions?

What is the logic expression of the output?

What is the logic expression of the output?

This is what we have to work with now (we don't need the circuit anymore)

$$
\begin{aligned}
\mathrm{J}_{1} & =\mathrm{w} \\
\mathrm{~K}_{1} & =\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
\mathrm{~J}_{2} & =\mathrm{w} \mathrm{y}_{1} \\
\mathrm{~K}_{2} & =\overline{\mathrm{w}} \\
\mathrm{z} & =\mathrm{y}_{1} \mathrm{y}_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
& J_{1}=w \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
\mathrm{J}_{1} & =\mathrm{w} \\
\mathrm{~K}_{1} & =\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
\mathrm{~J}_{2} & =\mathrm{w} \mathrm{y}_{1} \\
\mathrm{~K}_{2} & =\overline{\mathrm{w}} \\
& \begin{array}{c}
\text { Present } \\
\text { state }
\end{array} \\
\cline { 2 - 4 } & y_{2} y_{1}
\end{aligned} J_{2} \mathrm{~J}_{2}
$$

Let's derive the excitation table

$$
\begin{aligned}
& J_{1}=w \\
& K_{1}=\bar{w}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& K_{2}=\bar{w} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2}
\end{aligned}
$$

$$
\mathrm{J}_{2}=\mathrm{w} \mathrm{y}_{1}
$$

$$
\mathrm{K}_{2}=\overline{\mathrm{w}}
$$

Presen state $y_{2} y_{1}$	Flip-flop inputs		$\begin{gathered} \text { Output } \\ z \end{gathered}$
	$w=0$	$w=1$	
	$J_{2} K_{2} \quad J_{1} K_{1}$	$\begin{array}{lll}J_{2} K_{2} & J_{1} K_{1}\end{array}$	
00			0
01			0
10			0
11			1

$$
z=y_{1} y_{2}
$$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2}
\end{aligned}
$$

$$
\mathrm{J}_{2}=\mathrm{w} \mathrm{y}_{1}
$$

$$
\mathrm{K}_{2}=\overline{\mathrm{w}}
$$

Presen state $y_{2} y_{1}$	Flip-flop inputs				$\begin{gathered} \text { Output } \\ \text { z } \end{gathered}$
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00		01		11	0
01		01		11	0
10		01		10	0
11		01		10	1

$z=y_{1} y_{2}$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}}
\end{aligned}
$$

Present state	Flip-flop inputs			Output
	$w=0$	$w=1$	z	
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	
00	01	11	0	
01	01	11	0	
10	01	10	0	
11	01	10	1	

$$
z=y_{1} y_{2}
$$

The excitation table

$$
\begin{aligned}
& J_{1}=w \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

We don't need the logic expressions anymore

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

We don't need the logic expressions anymore

Present state $y_{2} y_{1}$	Flip-flop inputs				Output
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

Let's derive the state table

Present state	Flip-flop inputs				
	$w=0$		$w=1$		
$y_{2} y_{1}$	Output				
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	z
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

State table
Excitation table

Let's derive the state table

Present state	Next state	Output z	Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$\mathrm{w}=0 \quad \mathrm{w}=1$			$w=0$		$w=1$		
A				$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
$\mathrm{B} \leftarrow$			-00	01	01	00	11	0
$\mathrm{C} \leftarrow$			-01	01	01	10	11	0
$\mathrm{D} \leftarrow$			- 10	01	01	00	10	0
			-11	01	01	10	10	1

State table
Excitation table

This step is easy
(map 2-bit numbers to 4 letters)

Let's derive the state table

Present state	Next state	Output z	Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0 \quad w=1$			$w=0$		$w=1$		
A		$0 \leftarrow$		$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
B		$0 \leftarrow$	00	01	01	00	11	- 0
C		0	01	01	01	10	11	- 0
D		$1 \leftarrow$	10	01	01	00	10	- 0
			11	01	01	10		-1

State table
Excitation table

This step is easy too
(the outputs are the same in both tables)

Let's derive the state table

Present state	Next state	Output z	Presen state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$\mathrm{w}=0 \quad \mathrm{w}=1$			$w=0$		$w=1$		
A		0		$J_{2} K_{2}$	$J_{1} K_{1}$	$\mathrm{J}_{2} \mathrm{~K}_{2}$	$J_{1} K_{1}$	
B		0	00	01	01	00	11	0
C		0	01	01	01	10	11	0
D		1	10	01	01	00	10	0
			11	01	01	10	10	1

State table
Excitation table

How should we do this?

JK Flip-Flop Refresher

[Figure 5.16a from the textbook]

JK Flip-Flop Refresher

(a) Circuit

J	K	$Q(t+1)$
0	0	$Q(t)$
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

(b) Truth table

(c) Graphical symbol
[Figure 5.16 from the textbook]

Let's derive the state table

Present state	Next state	Output z	Presen state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$\mathrm{w}=0 \quad \mathrm{w}=1$			$w=0$		$w=1$		
A		0		$J_{2} K_{2}$	$J_{1} K_{1}$	$\mathrm{J}_{2} \mathrm{~K}_{2}$	$J_{1} K_{1}$	
B		0	00	01	01	00	11	0
C		0	01	01	01	10	11	0
D		1	10	01	01	00	10	0
			11	01	01	10	10	1

State table
Excitation table

How should we do this?

Let's derive the state table

Present state	Next state		Output z
		0	
B		0	
C		0	
D		1	

Presen state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J	K	$Q(t+1)$
0	0	$Q(t)$
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

Let's derive the state table

Present state	Next state		Output z
		0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs				Outputz
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J	K	$Q(t+1)$		J	K
	$Q(t+1)$				
0	0	$Q(t)$		0	0
0	1	0		$0(t)$	0
1	0	1		1	0
1	1	$\bar{Q}(t)$		1	1
			$\bar{Q}(t)$		

Let's derive the state table

Let's derive the state table

Present state	Next state		Output z
	$\mathrm{w}=1$	A	
B		$?$	0
C			0
D			1

Present state	Flip-flop inputs				
	$w=0$		$w=1$		
$y_{2} y_{1}$	Output				
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	z
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J	K	$Q(t+1)$		J	K
	$Q(t+1)$				
0	0	$Q(t)$		0	0
0	1	0		$0(t)$	
1	0	1		1	0
1	1	$\bar{Q}(t)$		1	1
			$\bar{Q}(t)$		

Let's derive the state table

Present state	Next state		Output Z
	$\mathrm{W} \quad \mathrm{w}=1$		
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J	$K(t+1)$				
0	0	$Q(t)$		$J K$	$Q(t+1)$
0	1	0	0	$Q(t)$	
1	0	1		0	1
1	0	0			
1	1	$\bar{Q}(t)$		1	1
1	1	$\bar{Q}(t)$			

Let's derive the state table

Present state	Next state		Output Z
	$\mathrm{W} \quad \mathrm{w}=1$		
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J K	$Q(t+1)$	J K	$Q(t+1)$
00	Q (t)	00	Q(t)
01	Q	01	0
10	1	10	1
11	$\overline{\mathrm{Q}}(\mathrm{t})$	11	$\overline{\mathrm{Q}}(\mathrm{t})$

Let's derive the state table

Present state	Next state		Output Z
	A	0	
B		0	
C		0	
D		1	

Presen state $y_{2} y_{1}$	Flip-flop inputs				Outputz
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$\mathrm{J}_{2} \mathrm{~K}_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1
J K	$Q(t+1$		J K	$Q(t+1)$	
00	Q (t)		00	Q (t)	
01	0		01	0	
10	1		10	1	
11	$\overline{\mathrm{Q}}$ (t)		11	$\bar{Q}(\mathrm{t})$	

Let's derive the state table

Present state	Next state		Output Z
	A	0	
B		0	
C		0	
D		1	

Let's derive the state table

The two tables for the initial circuit

Present state	Next state		Output Z
	$\mathrm{W}=1$	A	
B	A	0	
C	A	0	
D	A	D	0

Present state	Flip-flop inputs				
	$w=0$		$w=1$		
$y_{2} y_{1}$	Output				
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	z
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

State table
Excitation table

The state diagram

State diagram

The state diagram

Thus, this FSM is identical to the one in the previous example, even though the circuit uses JK flip-flops.

Present state	Next state		Output Z
	$\mathrm{W}=1$	A	
B	A	0	
C	A	0	
D	A	D	0

State table

State diagram

Yet Another Example (with mixed flip-flops)

What does this circuit do?

[Figure 6.79 from the textbook]

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

What are the logic expressions?

[Figure 6.79 from the textbook]

What are the logic expressions?

What are the logic expressions?

The Excitation Table

$$
\begin{aligned}
& \mathrm{D}_{1}=\mathrm{w}\left(\overline{\mathrm{y}}_{1}+\mathrm{y}_{2}\right) \\
& \mathrm{T}_{2}=\overline{\mathrm{w}} \mathrm{y}_{2}+\mathrm{w} \mathrm{y}_{1} \overline{\mathrm{y}}_{2} \\
& \mathrm{z}=\mathrm{y}_{1} \mathrm{y}_{2}
\end{aligned}
$$

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Excitation table

Let's derive the state table

Present state	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state			Present state $y_{2} y_{1}$	Flip-flop inputs		Output Z
	Next state	Output z		$w=0$	$w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
A B			00	00	01	0
C			01	00	10	0
D			10	10	01	0
			11	10	01	1

This step is easy
(map 2-bit numbers to 4 letters)

Let's derive the state table

Present state		Output z	Present state $y_{2} y_{1}$	Flip-flop inputs	OutputZ
	Next state			$w=0 \quad w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1} \quad T_{2} D_{1}$	
A					
B		0	00	00 01	- 0
C		0	01	0010	0
D		1	10	1001	0
			11	1001	1

This step is easy too
(the outputs are the same in both tables)

Let's derive the state table

Present state	Next state	Outputz	Present state $y_{2} y_{1}$	Flip-flop inputs		Output Z
				$w=0$	$w=1$	
	$\mathrm{w}=0 \quad \mathrm{w}=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
A	?	0				
B		0	00	00	01	0
C		0	01	00	10	0
D		1	10	10	01	0
			11	10	01	1

What should we do here?

Let's derive the state table

Present state		Output z	Present state $y_{2} y_{1}$	Flip-flop inputs		Output Z
	Next state			$w=0$	$w=1$	
	$\mathrm{w}=0 \quad \mathrm{w}=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
A	?	0				
B		0	00	00	01	0
C		0	01	00	10	0
D		1	10	10	01	0
			11	10	01	1

What should we do here?

T	$\mathrm{Q}(t+1)$	D	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$	0	0
1	$\mathrm{Q}(t)$		1

Let's derive the state table

Present state	Next state		Output Z
		$\mathrm{w}=1$	
B		0	
C		0	
D		0	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\
\hline 0 & \mathrm{Q}(t) & & 0 \\
\hline 1 & \mathrm{Q}(t) & & 1
\end{array}
$$

Let's derive the state table

Present state	Next state		Output Z
		$\mathrm{w}=1$	
B		0	
C		0	
D		0	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state	Next state		Output Z
		$\mathrm{w}=1$	
B		0	
C		0	
D		0	

Present state $y_{2} y_{1}$	Flip-flop inputs		$\begin{aligned} & \text { Output } \\ & z \end{aligned}$
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
d1	00	10	0
19	10	01	0
11	10	01	1
T ${ }^{\text {Q }}$	$Q(\lambda+1)$	D	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$	0	0
1	$\overline{\mathrm{Q}}(t)$	1	1

Let's derive the state table

Present state	Next state		Output Z
		$\mathrm{w}=1$	
B		0	
C		0	
D		0	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state	Next state		Output Z
		$\mathrm{w}=1$	
B		0	
C		0	
D		0	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state	Next state		Output Z
		$\mathrm{w}=1$	
B		0	
C		0	
D		0	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Let's derive the state table

Present state		Output z	Present state $y_{2} y_{1}$	Flip-flop inputs	Output Z
	Next state			$w=0 \quad w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1} \quad T_{2} D_{1}$	
A	A	0	00	0001	0
C	$?$	0	01	0010	0
D		1	10	1001	0
			11	1001	1

What should we do here?

T	$\mathrm{Q}(t+1)$		
0	$\mathrm{Q}(t)$	D	$\mathrm{Q}(t+1)$
1	$\mathrm{Q}(t)$	1	0

Let's derive the state table

Present state	Next state		Output Z
	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\
\hline 0 & \mathrm{Q}(t) & & 0 \\
\hline 1 & \mathrm{Q}(t) & & 1
\end{array}
$$

Let's derive the state table

Present state	Next state		Output Z
	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w} \quad \mathrm{w}=1$		
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output z
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1
	$Q(t+1)$	D	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$	0	0
1	$\overline{\mathrm{Q}}(t)$	1	1

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w} \quad \mathrm{w}=1$		
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		$\begin{gathered} \text { Output } \\ z \end{gathered}$
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1
	$Q(t+1)$	D	$\mathrm{Q}(t+1)$
0	1	0	0
1	$\overline{\mathrm{Q}}(t)$	1	1

Let's derive the state table

Present state	Next state		Output Z
	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & & \mathrm{D} \\
\mathrm{Q}(t+1) \\
\hline 0 & 1 & & 0 \\
\hline 0 & \overline{\mathrm{Q}}(t) & & 0 \\
1 & 1 & 1
\end{array}
$$

Let's derive the state table

Present state	Next state		Output Z
	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & & \mathrm{D} \\
\mathrm{Q}(t+1) \\
\hline 0 & 1 & & 0 \\
1 & \overline{\mathrm{Q}}(t) & & 1
\end{array}
$$

Let's derive the state table

Let's derive the state table

Present state	Next state		Output Z
	$\mathrm{w}=1$	A	
B	A	0	
C	A	0	
D	A	D	0

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T	$\mathrm{Q}(t+1)$		
0	$\mathrm{Q}(t)$	D	$\mathrm{Q}(t+1)$
1	$\mathrm{Q}(t)$	1	0

The two tables for the initial circuit

Present state	Next state		Output Z
	$\mathrm{w}=1$	A	
B	A	0	
C	A	0	
D	A	D	0

State table

Present state	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	z
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Excitation table

The state diagram

State diagram

The state diagram

Thus, this FSM is identical to the ones in the previous examples, even though the circuit uses one D and one T flip-flop.

Present state	Next state		Output z
	$\mathrm{w}=1$	B	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

Questions?

THE END

