

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

FSM as an Arbiter Circuit

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 11 is out
- It is due on Monday Nov 28 @ 4pm

Administrative Stuff

- Homework 12 is out
- It is due on Monday Dec 5 @ 4pm

Administrative Stuff

- Final Project (7% of your grade)
- Read the instructions in the e-mail that I sent you.
- Let me know if you did not get that e-mail.
- Also, posted on the class web page (Labs section)
- This is your lab for the last two weeks
- This is due during your last lab (dead week)

Arbiter Circuit

Goal

- Design a machine that controls access by several devices to a shared resource
- The resource can be used by only one device at a time
- Any changes can occur only on the positive edge of the clock signal
- Each device provides one input to the FSM, which is called a request
- The FSM produces one output for each device, which is called a grant

Goal

- The requests from the devices are prioritized
- If two requests are active at the same time, then only the device with the highest priority will be given access to the shared resource
- After a device is done with the shared resource, it must make its request signal equal to 0.
- If there are no outstanding requests, then the FSM stays in an Idle state

Conceptual Diagram

Conceptual Diagram

[Figure 9.20 from the textbook]

[Figure 6.72 from the textbook]

Alternative style of state diagram for the arbiter

[Figure 6.73 from the textbook]

This design has one flaw: If device1 and device2 raise requests all the time, then device3 will never get serviced.

This state diagram solves this problem

Let's look at a simpler example with only two devices that need to use the shared resource

State diagram for the simpler arbiter

State diagram for the arbiter circuit

State Table

State-Assigned Table

		1				
		5112=00	01	61	11	}
	Y2 Y1	1/2 Y1	Y2 Y,	$Y_2 Y_1$	Y2Y,	8192
A	00	00	10	01	D· (00
B	01	00	00	0	01	10
C	01	00	10	00	10	01
2	11	d d	dd	d d	dd	dd
		L				

Output Expressions

Output expressions

 $g_1 = Y_1$ g2 = Y2

Next State Expressions

 $Y_2 = r_2 Y_2 + r_1 r_2 Y_1$

 $Y_1 = r_1 Y_2$

Circuit Diagram

Questions?

THE END