
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Simple Processor

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff
• Final Project (7% of your grade)

• This is due this week (during your lab)

Digital System

• Datapath circuit
▪ To store data
▪ To manipulate data
▪ To transfer data from one part of the system to another
▪ Comprise building blocks such as registers, shift registers,

counters, multipliers, decoders, encoders, adders, etc.

• Control circuit
▪ Controls the operation of the datapath circuit
▪ Designed as a FSM

A Simple Processor

[Figure 7.9 from the textbook]	

What are the components?

[Figure 7.9 from the textbook]	

Registers

[Figure 7.9 from the textbook]	

Data Bus

[Figure 7.9 from the textbook]	

Tri-State Drivers

[Figure 7.9 from the textbook]	

Arithmetic Logic Unit (ALU)

[Figure 7.9 from the textbook]	

Control Circuit

[Figure 7.9 from the textbook]	

A Closer Look at the Registers

Register R0

[Figure 7.9 from the textbook]	

All Registers

[Figure 7.9 from the textbook]	

Registers R0, R1, R2 and R3
are accessible to the programmer

[Figure 7.9 from the textbook]	

Registers A and G
are NOT accessible to the programmer

[Figure 7.9 from the textbook]	

4-Bit Register

Loading Data into the Register

1 0 0 1

Loading Data into the Register

1 0

1

0 1

Loading Data into the Register

1 0

1

0 1

Loading Data into the Register

1 0 0 1

1
1 1 0 0

Keeping Data into the Register

1 1 0 0

Keeping Data into the Register

0
1 1 0 0

Keeping Data into the Register

0
1 1 0 0

A Closer Look at the Data Bus

Data Bus

[Figure 7.9 from the textbook]	

Bus Structure

• We need a way to transfer data from any
register (device) to any other register (device)

• A bus is simply a set of n wires to transfer n-bit data

• What if two registers write to the bus at the same time?

n	 Bus	

One way to implement a data bus
is to use multiplexers

[Figure 7.4 from the textbook]	

[Figure 7.4 from the textbook]	

This requires one multiplexer per bit.
Assuming there are four 4-bit registers, we need four 5-to-1 multiplexers.

(four 5-to-1 multiplexers)

One way to implement a data bus
is to use multiplexers

[Figure 7.4 from the textbook]	

The reason we need
5-to-1 is because
the external data
counts as an "extra register".

(four 5-to-1 multiplexers)

One way to implement a data bus
is to use multiplexers

A Closer Look at the Tri-State Driver

Tri-State Driver

[Figure 7.9 from the textbook]	

All Tri-State Drivers

[Figure 7.9 from the textbook]	

Tri-state driver
(see Appendix B for more details)

[Figure 7.1 from the textbook]	

Z:	 High	 impedance	 state	

Tri-state driver
(see Appendix B for more details)

•  Alternative way to implement a data bus

•  Allows several devices to be connected to a single wire
(this is not possible with regular logic gates because
their outputs are always active; an OR gate is needed)

•  Note that at any time, at most one of e0, e1, e2, and e3
can be set to 1

e2 e3 e1 e0

device0 device3 device2 device1

An n-bit Tri-State Driver
can be constructed using n 1-bit tri-state buffers

e

Input

Output

e e e e

2-Bit Register

IN1 IN0 OUT1 OUT0

0
1

0
1

R in

Clock

How to connect two 2-bit registers to a bus
(using tri-state drivers)

[Figure 7.3 from the textbook]	

This shows only two 2-bit registers, but this design scales to more and larger registers.

1 0 0 1

Register 1 stores the number 210 = 102 Register 2 stores the number 110 = 012

Moving the Contents of R1 to R2

1 0 0 1

Initially all control inputs are set to 0 (no reading or writing allowed).

Moving the Contents of R1 to R2

0 0

0 0

1 0 0 1

1

Moving the Contents of R1 to R2

0 0

0

R1out is set to 1 (this enables reading from register 1).

1 0 0 1

1

Moving the Contents of R1 to R2

0 0

0

The bits of R1 are now on the data bus (2-bit data bus in this case).

1 0 0 1

1

Moving the Contents of R1 to R2

1 0

0

R2in is set to 1 (this enables writing to register 2).

1 0 0 1

1

Moving the Contents of R1 to R2

1 0

0

The bits of R1 are still on the bus and they propagate to the multiplexers...

1 0 1 0

1

Moving the Contents of R1 to R2

1 0

0

... and on the next positive clock edge to the outputs of the flip-flops of R2.

1 0 1 0

0

Moving the Contents of R1 to R2

0 0

0

After the copy is complete R1out and R2in are set to 0.

1 0 1 0

0

Moving the Contents of R1 to R2

0 0

0

All control inputs are now disabled (no reading or writing is allowed).

1 0 1 0

0

Moving the Contents of R1 to R2

0 0

0

Register 2 now holds the same value as register 1.

Another Example

1 0 1 0

0

Loading Data From The Bus Into R2

0 0

0

Initially all control inputs are set to 0 (no reading or writing allowed).

1 0 1 0

0

Loading Data From The Bus Into R2

0 0

0

The number 310=112 is placed on the 2-bit data bus.

1
1

1 0 1 0

0

Loading Data From The Bus Into R2

1 0

0

1
1

R2in is set to 1 (this enables writing to register 2).

1 0 1 0

0

Loading Data From The Bus Into R2

1 0

0

The bits of the data propagate the the multiplexers...

1
1

1 0 1 1

0

Loading Data From The Bus Into R2

1 0

0

1
1

... and on the next positive clock edge to the outputs of the flip-flops of R2.

1 0 1 1

0

Loading Data From The Bus Into R2

0 0

0

1
1

After the loading is complete R2in is set to 0.

1 0 1 1

0

Loading Data From The Bus Into R2

0 0

0

Register 2 now stores the number 310=112.

A Closer Look at the
Arithmetic Logic Unit (ALU)

Arithmetic Logic Unit (ALU)

[Figure 7.9 from the textbook]	

Two Registers

[Figure 7.9 from the textbook]	

4-Bit Register

Adder/Subtractor

[Figure 7.9 from the textbook]	

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Adder/Subtractor unit

x 	
1 	
 y 	
1 	

g 	
1 	
 p 	
1 	

s 	
1 	

x 	
0 	
 y 	
0 	

s 	
0 	

c 	
2 	

x 	
0 	
 y 	
0 	

c 	
0 	

c 	
1 	

g 	
0 	
 p 	
0 	

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]	

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24 –

c 8 c 16 c 32

x 31 24 – y 31 24 –

c 24

[Figure 3.17 from the textbook]	

A hierarchical carry-lookahead adder

Adder/subtractor unit

• Subtraction can be performed by simply adding the
2’s complement of the second number, regardless of
the signs of the two numbers.

• Thus, the same adder circuit can be used to perform
both addition and subtraction !!!

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Adder/subtractor unit

XOR Tricks

y	

control	

out	

y	

0	

y	

XOR as a repeater

y	

1	

y	

XOR as an inverter

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Addition: when control = 0

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Addition: when control = 0

0	

0	
0	
0	

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Addition: when control = 0

0	

0	
0	
0	

yn-1	
 y1	
 y0	
…	

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

1	

1	
1	
1	

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

1	

1	
1	
1	

yn-1	
 y1	
 y0	
…	

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]	

Subtraction: when control = 1

1	

1	
1	
1	

yn-1	
 y1	
 y0	
…	

1	

carry for the 	

first column!	

A Closer Look at the Control Circuit

Control Circuit

[Figure 7.9 from the textbook]	

Control Signals

[Figure 7.9 from the textbook]	

Clear

FRin

Design a FSM with input w and outputs
• R0in
• R0out

• R1in
• R1out

• R2in
• R2out

• R3in
• R3out

• Ain

• Gin
• Gout

• Clear

• FRin

• AddSub

• Extern

• Done

Design a FSM with input w and outputs
• R0in
• R0out

• R1in
• R1out

• R2in
• R2out

• R3in
• R3out

• Ain

• Gin
• Gout

• Clear

• FRin

• AddSub

• Extern

• Done

• T0
• T1

• T2
• T3

•  I0
•  I1

•  I2
•  I3

• X0
• X1

• X2
• X3

• Y0
• Y1

• Y2
• Y3

These are helper outputs that are
one-hot encoded. They are used
to simplify the expressions for
the other outputs.

The function register and decoders

[Figure 7.11 from the textbook]	

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

Function

The function register and decoders

[Figure 7.11 from the textbook]	

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

Function

All three decoders
are always enabled

Operations performed by this processor

[Table 7.1 from the textbook]	

Operation Function Performed

Load Rx, Data Rx ç Data

Move Rx, Ry Rx ç [Ry]

Add Rx, Ry Rx ç [Rx] + [Ry]

Sub Rx, Ry Rx ç [Rx] - [Ry]

Operations performed by this processor

[Table 7.1 from the textbook]	

Operation Function Performed

Load Rx, Data Rx ç Data

Move Rx, Ry Rx ç [Ry]

Add Rx, Ry Rx ç [Rx] + [Ry]

Sub Rx, Ry Rx ç [Rx] - [Ry]

Where Rx and Ry can be one of four possible options: R0, R1, R2, and R3

f1 f0 Function

0 0 Load

0 1 Move

1 0 Add

1 1 Sub

Rx1 Rx0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

Ry1 Ry0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

Operations performed by this processor

f1 f0 Function

0 0 Load

0 1 Move

1 0 Add

1 1 Sub

Rx1 Rx0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

Ry1 Ry0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

è Move R3, R0 0 1 1 1 0 0

Operations performed by this processor

The function register and decoders

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

0 1 1 1 0 0 è Move R3, R0

The function register and decoders

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

0 1 1 1 0 0

0 1 1 1 0 0

è Move R3, R0

The function register and decoders

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

è Move R3, R0

The function register and decoders

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

0 1 0 0 0 0 0 1 1 0 0 0

è Move R3, R0

The function register and decoders

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

0 1 0 0 0 0 0 1 1 0 0 0

è Move R3, R0

one-hot encoded one-hot encoded one-hot encoded

f1 f0 Function

0 0 Load

0 1 Move

1 0 Add

1 1 Sub

Rx1 Rx0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

Ry1 Ry0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

è Add R1, R3 1 0 0 1 1 1

Operations performed by this processor

f1 f0 Function

0 0 Load

0 1 Move

1 0 Add

1 1 Sub

Rx1 Rx0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

Ry1 Ry0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

è Sub R0, R2 1 1 0 0 1 0

Operations performed by this processor

f1 f0 Function

0 0 Load

0 1 Move

1 0 Add

1 1 Sub

Rx1 Rx0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

Ry1 Ry0 Register

0 0 R0

0 1 R1

1 0 R2

1 1 R3

è Load R2, Data 0 0 1 0 x x

Operations performed by this processor

Similar Encoding is Used by Modern Chips

[http://en.wikipedia.org/wiki/Instruction_set]	

Sample Assembly Language Program
For This Processor

Move R3, R0
Add R1, R3
Sub R0, R2
Load R2, Data

Machine Language vs Assembly Language

Move R3, R0
Add R1, R3
Sub R0, R2
Load R2, Data

R3 ç [R0]
R1 ç [R1] + [R3]
R0 ç [R0] – [R2]
R2 ç Data

011100
100111
110010
001000

Machine Language Assembly Language Meaning / Interpretation

Machine Language vs Assembly Language

Move R3, R0
Add R1, R3
Sub R0, R2
Load R2, Data

R3 ç [R0]
R1 ç [R1] + [R3]
R0 ç [R0] – [R2]
R2 ç Data

011100
100111
110010
001000

Machine Language Assembly Language Meaning / Interpretation

Machine Language vs Assembly Language

Move R3, R0
Add R1, R3
Sub R0, R2
Load R2, Data

R3 ç [R0]
R1 ç [R1] + [R3]
R0 ç [R0] – [R2]
R2 ç Data

011100
100111
110010
001000

Machine Language Assembly Language Meaning / Interpretation

For short, each line
can be expressed as a
hexadecimal number

Machine Language vs Assembly Language

Move R3, R0
Add R1, R3
Sub R0, R2
Load R2, Data

R3 ç [R0]
R1 ç [R1] + [R3]
R0 ç [R0] – [R2]
R2 ç Data

1C
27
32
08

Machine Language Assembly Language Meaning / Interpretation

[http://en.wikipedia.org/wiki/Intel_8086]	

Intel 8086

[http://en.wikipedia.org/wiki/Intel_8086]	

Intel 8086

Memory Address

[http://en.wikipedia.org/wiki/Intel_8086]	

Intel 8086

Machine
Language

[http://en.wikipedia.org/wiki/Intel_8086]	

Intel 8086

Assembly
Language

Intel 8086

Comments

[http://en.wikipedia.org/wiki/Intel_8086]	

Another Part of The Control Circuit

A part of the control circuit for the processor

[Figure 7.10 from the textbook]	

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

What are the components?

[Figure 7.10 from the textbook]	

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

2-Bit Up-Counter

[Figure 7.10 from the textbook]	

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

2-bit Synchronous Up-Counter

T Q

Q Clock

T Q

Q

1

Clear_n

2-bit Synchronous Up-Counter with Enable

T Q

Q Clock

T Q

Q

Enable

Clear_n

2-to-4 Decoder with Enable Input

[Figure 7.10 from the textbook]	

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

2-to-4 Decoder with an Enable Input

[Figure 4.13c from the textbook]	

En	

2-to-4 Decoder with an Enable Input

[Figure 4.13c from the textbook]	

1	

(always enabled in this example)

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 0

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 0

1 0 0 0

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 1

0 1 0 0

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

1 0

0 0 1 0

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

1 1

0 0 0 1

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 0

1 0 0 0

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 1

0 1 0 0

0

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 1

0 1 0 0

1

So How Does This Work?

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

0 0

1 0 0 0

1

Meaning/Explanation
•  This is like a FSM that cycles through its four states

one after another.

•  But it also can be reset to go to state 0 at any time.

•  The implementation uses a counter followed by a
decoder. The outputs of the decoder are one-hot-
encoded.

•  This is like choosing a state assignment for an FSM
in which there is one Flip-Flop per state, i.e., one-hot
encoding (see Section 6.2.1 in the textbook)

Deriving the Control Signals

Design a FSM with input w and outputs
•  R0in
•  R0out

•  R1in

•  R1out

•  R2in

•  R2out

•  R3in

•  R3out

• Ain

• Gin
• Gout

• Clear

• FRin

• AddSub

• Extern

• Done

• T0
• T1

• T2
• T3

•  I0
•  I1

•  I2
•  I3

• X0
• X1

• X2
• X3

• Y0
• Y1

• Y2
• Y3

These are helper outputs that are
one-hot encoded. They are used
to simplify the expressions for
the other outputs.

Control Signals

[Figure 7.9 from the textbook]	

Control Signals

[Figure 7.9 from the textbook]	

Another Control Signal

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

[Figure 7.11 from the textbook]	

Yet Another Control Signal

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

[Figure 7.10 from the textbook]	

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

Expressing the 'FRin' signal

FRin = w T0
Load a new operation into
the function register

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

Expressing the 'Clear' signal

Clear = w T0 + Done
Reset the counter when Done
or when w=0 and no operation
is being executed (i.e., T0=1).

Control signals asserted in each time step

[Table 7.2 from the textbook]	

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Control signals asserted in each time step

[Table 7.2 from the textbook]	

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Time

These are the outputs of the
first 2-to-4 decoder that is connected to
the two most significant bits of the function register.
They are one-hot encoded so only one of
them is active at any given time (see Fig 7.11).

These come from the
outputs of the 2-to-4
decoder in Figure 7.10.
They are also one-hot
encoded.

The I0, I1 ,I2, I3 and T0,T1,T2,T3 Signals

Clock 	

X 	
0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

X 1 X 2 X 3

2-to-4 decoder

Function Register

Y 0

w 0 En

y 0

w 1

y 1 y 2 y 3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I 0

En

y 0 y 1 y 2 y 3

1

I 1 I 2 I 3

2-to-4 decoder

FR in

f 1 f 0 Rx 1 Rx 0 Ry 1 Ry 0

w 0 w 1

[Figure 7.11 from the textbook]	

Reset
Up-counter

Clear

w 0 En

y 0

w 1

y 1 y 2 y 3

1

T 1 T 2 T 3

2-to-4 decoder

Q 1 Q 0 Clock

T 0

[Figure 7.10 from the textbook]	

Different Operations Take Different Amount of Time

[Table 7.2 from the textbook]	

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

1	 clock	 cycle	
	
1	 clock	 cycle	
	
3	 clock	 cycles	
	
3	 clock	 cycles	

Operations performed by this processor

[Table 7.1 from the textbook]	

Operation Function Performed

Load Rx, Data Rx ç Data

Move Rx, Ry Rx ç [Ry]

Add Rx, Ry Rx ç [Rx] + [Ry]

Sub Rx, Ry Rx ç [Rx] - [Ry]

Where Rx and Ry can be one of four possible options: R0, R1, R2, and R3

Simple Processor

[Figure 7.9 from the textbook]	

Expressing the 'Extern' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Extern = I0 T1

Expressing the 'Done' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Done = (I0 + I1)T1 + (I2 + I3)T3

Expressing the 'Ain' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Ain = (I2 + I3)T1

Expressing the 'Gin' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Gin = (I2 + I3)T2

Expressing the 'Gout' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

Gout = (I2 + I3)T3

Expressing the 'AddSub' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

AddSub = I3

Expressing the 'R0in' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R0in = (I0 + I1)T1 X0 + (I2 + I3)T3 X0

Expressing the 'R1in' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R1in = (I0 + I1)T1 X1 + (I2 + I3)T3 X1

Expressing the 'R2in' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R2in = (I0 + I1)T1 X2 + (I2 + I3)T3 X2

Expressing the 'R3in' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R3in = (I0 + I1)T1 X3 + (I2 + I3)T3 X3

Expressing the 'R0out' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R0out = I1T1 Y0 + (I2 + I3) (T1 X 0 + T2 Y0)

Expressing the 'R1out' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R1out = I1T1 Y1 + (I2 + I3) (T1 X 1 + T2 Y1)

Expressing the 'R2out' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R2out = I1T1 Y2 + (I2 + I3) (T1 X 2 + T2 Y2)

Expressing the 'R3out' signal

T1 T2 T3

(Load): I0 Extern
 Rin = X
 Done

(Move): I1 Rin = X
 Rout = Y
 Done

(Add): I2 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 0

 Gout
 Rin = X
 Done

(Sub): I3 Rout = X
 Ain

 Rout = Y
 Gin
 AddSub = 1

 Gout
 Rin = X
 Done

R3out = I1T1 Y3 + (I2 + I3) (T1 X 3 + T2 Y3)

Derivation of the Control Inputs

•  For more insights into these derivations
 see pages 434 and 435 in the textbook

Some Additional Topics

The	 ALU	 for	 the	 Simple	 Processor	

[Figure	 7.9	 from	 the	 textbook]	

For	 this	 ALU,	 	
A+B	 if	 AddSub=1	
A-‐B	 if	 AddSub=0	

•  Arithmetic Logic Unit (ALU) computes arithmetic or logic functions
•  Example: A four-function ALU has two selection bits S1 S0

 (also called OpCode) to specify the function
–  00 (ADD), 01 (SUB), 10 (AND), 11 (OR)

•  Then the following set up will work

Another Arithmetic Logic Unit (ALU)

Result

ADD A
B

MUX
SUB A

B

AND A
B

OR A
B

00

01

10

11

A
L
U

A

B
Result

S1 S0
Symbol

S1 S0
(OpCode)

S1 S0 Function
0 0 ADD
0 1 SUB
1 0 AND
1 1 OR

•  The previous design is not very efficient as it uses an adder and
a subtractor circuit

•  We can design an add/subtract unit as discussed earlier
•  Then we can design a logical unit (AND and OR) separately
•  Then select appropriate output as result
•  What are the control signals, Add/Sub, Select0, and Select1?

An Alternative Design of Four-Function ALU

MUX
Result

ADD/SUB
A
B

MUX

Select1

AND
A
B

OR
A
B

0

1
0

1

Select0

Add/Sub

S1 S0 Function
0 0 ADD
0 1 SUB
1 0 AND
1 1 OR

Examples of Some Famous
Microprocessors

Intel's 4004 Chip

[http://en.wikipedia.org/wiki/Intel_4004]	

Technical specifications

• Maximum clock speed was 740 kHz

•  Instruction cycle time: 10.8 µs

 (8 clock cycles / instruction cycle)

•  Instruction execution time 1 or 2 instruction cycles
(10.8 or 21.6 µs), 46300 to 92600 instructions per
second

• Built using 2,300 transistors

[http://en.wikipedia.org/wiki/Intel_4004]	

Technical specifications
 • Separate program and data storage.

• The 4004, with its need to keep pin count down,
used a single multiplexed 4-bit bus for
transferring:
▪ 12-bit addresses
▪ 8-bit instructions
▪ 4-bit data words

•  Instruction set contained 46 instructions (of which
41 were 8 bits wide and 5 were 16 bits wide)

• Register set contained 16 registers of 4 bits each

•  Internal subroutine stack, 3 levels deep.
[http://en.wikipedia.org/wiki/Intel_4004]	

[http://en.wikipedia.org/wiki/Intel_4004]	

[http://en.wikipedia.org/wiki/Intel_4004]	

Intel's 8086 Chip

[http://en.wikipedia.org/wiki/Intel_8086]	

[http://en.wikipedia.org/wiki/Intel_8086]	

Simplified block diagram of
 Intel 8088 (a variant of 8086);
1=main registers;
2=segment registers and IP;
3=address adder;
4=internal address bus;
5=instruction queue;
6=control unit (very simplified!);
7=bus interface;
8=internal databus;
9=ALU;
 10/11/12=external address/
data/control bus. [http://en.wikipedia.org/wiki/Intel_8086]	

Questions?

THE END

