

## CprE 281: Digital Logic

#### **Instructor: Alexander Stoytchev**

http://www.ece.iastate.edu/~alexs/classes/

## **Logic Gates**

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

## **Administrative Stuff**

- HW1 is out
- It is due on Monday Aug 28 @ 4pm.
- Submit it on paper before the start of the lecture
- No late homeworks will be accepted.
- Staple all of your pages
- Please write clearly on the first page:
  - your name
  - student ID
  - Iab section letter

## Labs Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- You must print the answer sheet and do the prelab before you go to the lab.
- The TAs will check your prelab answers at the beginning of the recitation. If you don't have it done you'll lose 20% of the lab grade for that lab.

## **A Binary Switch**





x = 1

(a) Two states of a switch



(b) Symbol for a switch

## A Light Controlled by a Switch



(a) Simple connection to a battery

## A Light Controlled by a Switch



(b) Using a ground connection as the return path

# The Logical AND function (series connection of the switches)



#### The Logical OR function (parallel connection of the switches)



# A series-parallel connection of the switches



## **An Inverting Circuit**



#### **The Three Basic Logic Gates**



NOT gate

AND gate

OR gate

#### **Truth Table for NOT**



#### **Truth Table for AND**



#### **Truth Table for OR**





## Truth Tables for AND and OR

| $x_1$                                           | $x_2$                                         | $x_1 \cdot x_2$                               | $x_1 + x_2$      |
|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------|
| $\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$ | $egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$ | $egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}$ | 0<br>1<br>1<br>1 |

AND OR

#### Logic Gates with n Inputs





AND gate

OR gate

## Truth Table for 3-input AND and OR

| $x_1$ | $x_2$ | $x_3$ | $x_1 \cdot x_2 \cdot x_3$ | $x_1 + x_2 + x_3$ |
|-------|-------|-------|---------------------------|-------------------|
| 0     | 0     | 0     | 0                         | 0                 |
| 0     | 0     | 1     | 0                         | 1                 |
| 0     | 1     | 0     | 0                         | 1                 |
| 0     | 1     | 1     | 0                         | 1                 |
| 1     | 0     | 0     | 0                         | 1                 |
| 1     | 0     | 1     | 0                         | 1                 |
| 1     | 1     | 0     | 0                         | 1                 |
| 1     | 1     | 1     | 1                         | 1                 |

## Example of a Logic Circuit Implemented with Logic Gates



## Example of a Logic Circuit Implemented with Logic Gates







(a) Network that implements  $f = \bar{x}_1 + x_1 \cdot x_2$ 



(a) Network that implements  $f = \bar{x}_1 + x_1 \cdot x_2$ 



(a) Network that implements  $f = \bar{x}_1 + x_1 \cdot x_2$ 



(a) Network that implements  $f = \bar{x}_1 + x_1 \cdot x_2$ 



## **Timing Diagram**



#### **Truth Table for this Network**

|   | $x_1$ | $x_2$ | $f(x_1,x_2)$ | Α | В |
|---|-------|-------|--------------|---|---|
| - | 0     | 0     | 1            | 1 | 0 |
|   | 0     | 1     | 1            | 1 | 0 |
|   | 1     | 0     | 0            | 0 | 0 |
|   | 1     | 1     | 1            | 0 | 1 |

## **Functionally Equivalent Networks**



(a) Network that implements  $f = \bar{x}_1 + x_1 \cdot x_2$ 

## **Functionally Equivalent Networks**



(a) Network that implements  $f = \bar{x}_1 + x_1 \cdot x_2$ 



(d) Network that implements  $g = \bar{x}_1 + x_2$ 

## The XOR Logic Gate



(a) Two switches that control a light

(b) Truth table

## The XOR Logic Gate



(a) Two switches that control a light

| x | у | L |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
|   |   |   |

(b) Truth table



(c) Logic network



(d) XOR gate symbol

## **XOR Analysis**























| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| a | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b |  | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|--|-----------------------|-----------------------|
| 0 | 0 |  | 0                     | 0                     |
| 0 | 1 |  | 0                     | 1                     |
| 1 | 0 |  | 0                     | 1                     |
| 1 | 1 |  | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| a b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|-----|-----------------------|-----------------------|
| 0 0 | 0                     | 0                     |
| 0 1 | 0                     | 1                     |
| 1 0 | 0                     | 1                     |
| 1 1 | 1                     | 0                     |



| b |                       | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub>              |
|---|-----------------------|-----------------------|------------------------------------|
| 0 |                       | 0                     | 0                                  |
| 1 |                       | 0                     | 1                                  |
| 0 |                       | 0                     | 1                                  |
| 1 |                       | 1                     | 0                                  |
|   | b<br>0<br>1<br>0<br>1 | b<br>0<br>1<br>0<br>1 | b s1   0 0   1 0   0 0   1 1   1 1 |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |  |
|---|---|-----------------------|-----------------------|--|
| 0 | 0 | 0                     | 0                     |  |
| 0 | 1 | 0                     | 1                     |  |
| 1 | 0 | 0                     | 1                     |  |
| 1 | 1 | 1                     | 0                     |  |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |

| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |

|   |   | ?                     |                       |
|---|---|-----------------------|-----------------------|
| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |

.



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |





| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |  |
|---|---|-----------------------|-----------------------|--|
| 0 | 0 | 0                     | 0                     |  |
| 0 | 1 | 0                     | 1                     |  |
| 1 | 0 | 0                     | 1                     |  |
| 1 | 1 | 1                     | 0                     |  |

| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |



| а | b | <i>s</i> <sub>1</sub> | <i>s</i> <sub>0</sub> |
|---|---|-----------------------|-----------------------|
| 0 | 0 | 0                     | 0                     |
| 0 | 1 | 0                     | 1                     |
| 1 | 0 | 0                     | 1                     |
| 1 | 1 | 1                     | 0                     |

#### The following examples came from this book

#### Click to LOOK INSIDE!





[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]

## **Questions?**

## THE END