

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW2 is due on Wednesday Sep 6 @ 4pm
- Please write clearly on the first page (in block capital letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
 - Staple all of your pages
- If any of these are missing, then you will lose 10% of your grade for that homework.

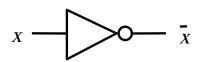
Administrative Stuff

- Next week we will start with Lab2
- It will be graded!
- Print the answer sheet for that lab and do the prelab at home. Otherwise you'll lose 20% of your grade for that lab.

Labs Next Week

- If your lab is on Mondays, i,e.,
- Section N: Mondays, 9:00 11:50 am (Coover Hall, room 1318)
- Section P: Mondays, 12:10 3:00 pm (Coover Hall, room 1318)
- You will have 2 labs in one on September 11.
- That is, Lab #2 and Lab #3.

Labs Next Week


 If your recitation is on Mondays (Sections N & P), please go to one of the other 11 recitations next week:

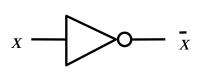
```
    Section U: Tuesday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
        Section M: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2050)
        Section Z: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 1318)
        Section J: Wednesday 8:00 AM - 10:50 AM (Coover Hall, room 2050)
        Section W: Wednesday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
        Section T: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 1318)
        Section Q: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
        Section V: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
        Section K: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 1318)
        Section G: Friday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
```

This is only for next week. And only for the recitation (first hour).
 You won't be able to stay for the lab as the sections are full.

Quick Review

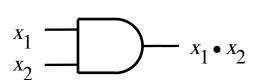
The Three Basic Logic Gates

$$x_1$$
 x_2
 $x_1 \bullet x_2$

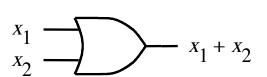

$$x_1$$
 x_2
 $x_1 + x_2$

NOT gate

AND gate


OR gate

Truth Table for NOT


\mathcal{X}	\overline{X}
0	1
1	0

Truth Table for AND

x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

$x_1 + x_2$
0
1
1
1

Truth Tables for AND and OR

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
$egin{array}{c} 0 \ 0 \ 1 \ 1 \ \end{array}$	0	0	0
	1	0	1
	0	0	1
	1	1	1

AND OR

Operator Precedence

 In regular arithmetic and algebra, multiplication takes precedence over addition

This is also true in Boolean algebra

Operator Precedence (three different ways to write the same)

$$x_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2$$

$$(x_1 \cdot x_2) + ((\bar{x}_1) \cdot (\bar{x}_2))$$

$$x_1x_2 + \bar{x}_1\bar{x}_2$$

DeMorgan's Theorem

15a.
$$\frac{\overline{x} \cdot y}{\overline{x} + y} = \frac{\overline{x} + \overline{y}}{\overline{x}}$$

15b. $\frac{\overline{x} \cdot y}{\overline{x} + y} = \frac{\overline{x} \cdot \overline{y}}{\overline{y}}$

Function Synthesis

Synthesize the Following Function

x ₁	X ₂	f(x ₁ , x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

$$\overline{x_1 x_2} = \overline{x_1}$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = \underline{1} \cdot f_{00} + \underline{1} \cdot f_{01} + \underline{0} \cdot f_{10} + \underline{1} \cdot f_{11}$$

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \underline{0} + \underline{x}_1 x_2$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$$

A function to be synthesized

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Let's look at it row by row. How can we express the last row?

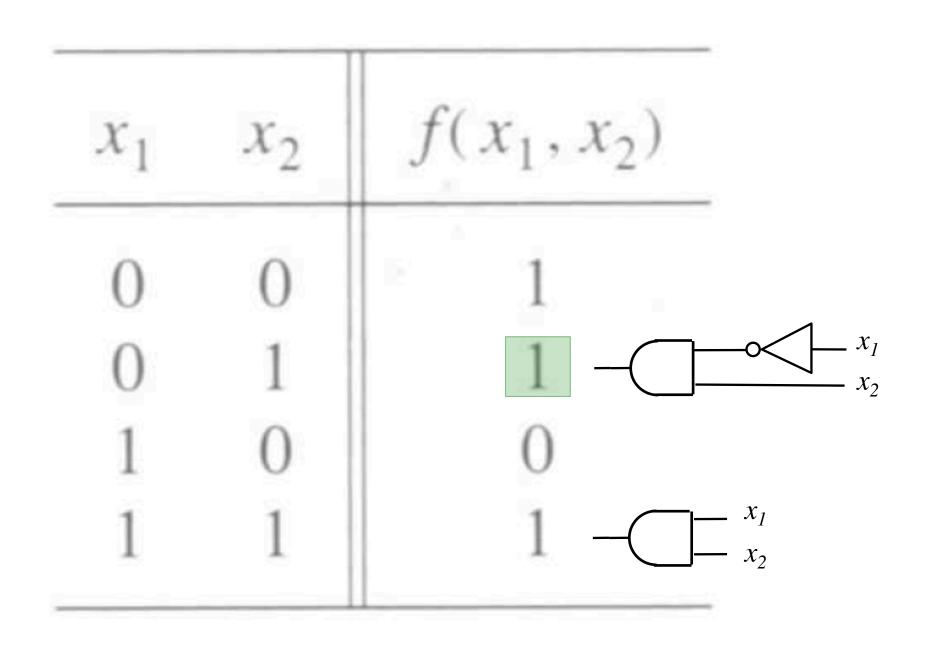
x_1	x_2	$f(x_1, x_2)$		
0	0	1		
0	1	1		
1	0	0		
1	1	1		

Let's look at it row by row. How can we express the last row?

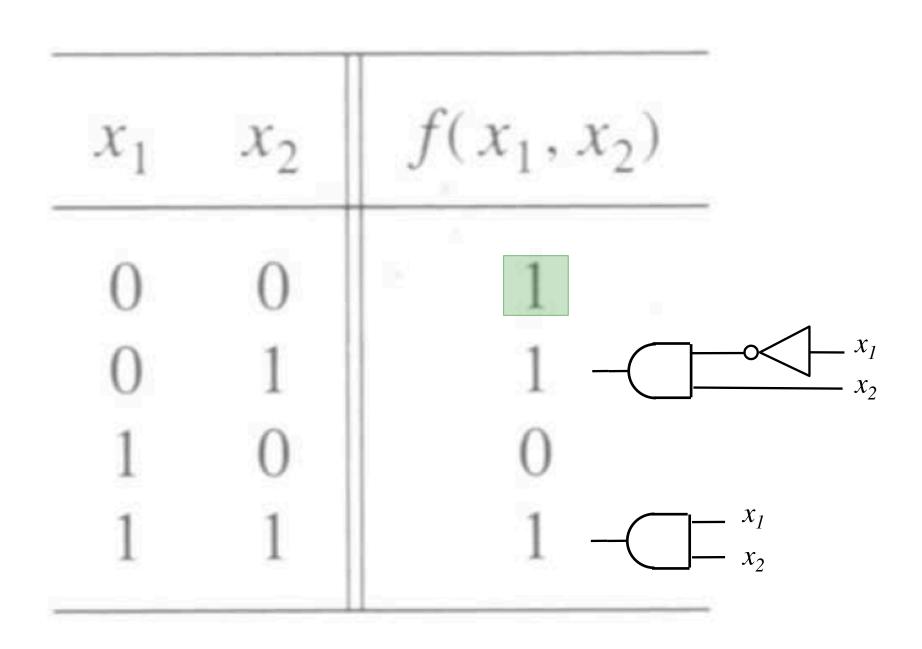
x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	$1 x_1 x_2$

Let's look at it row by row. How can we express the last row?

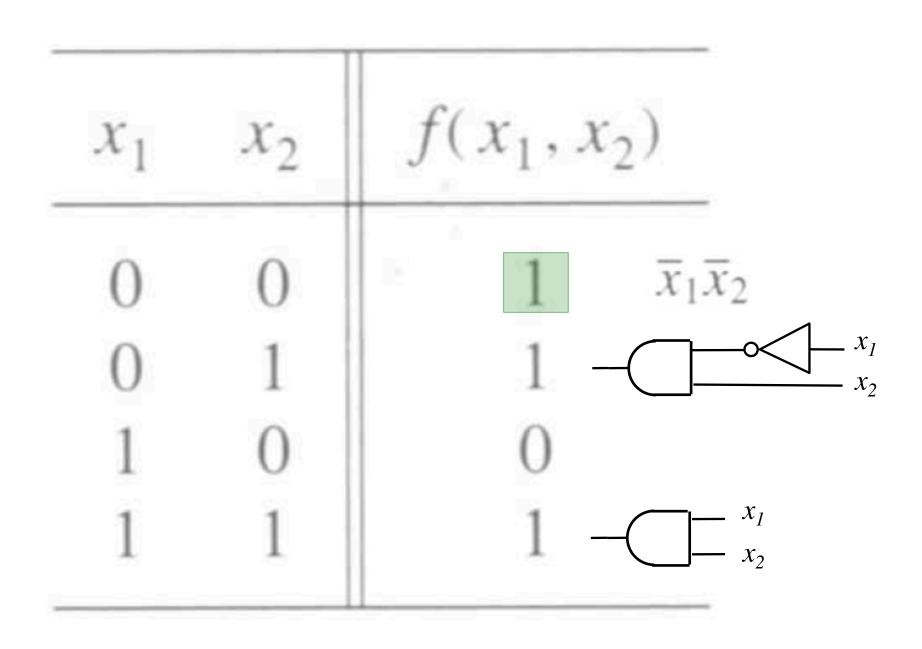
x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	

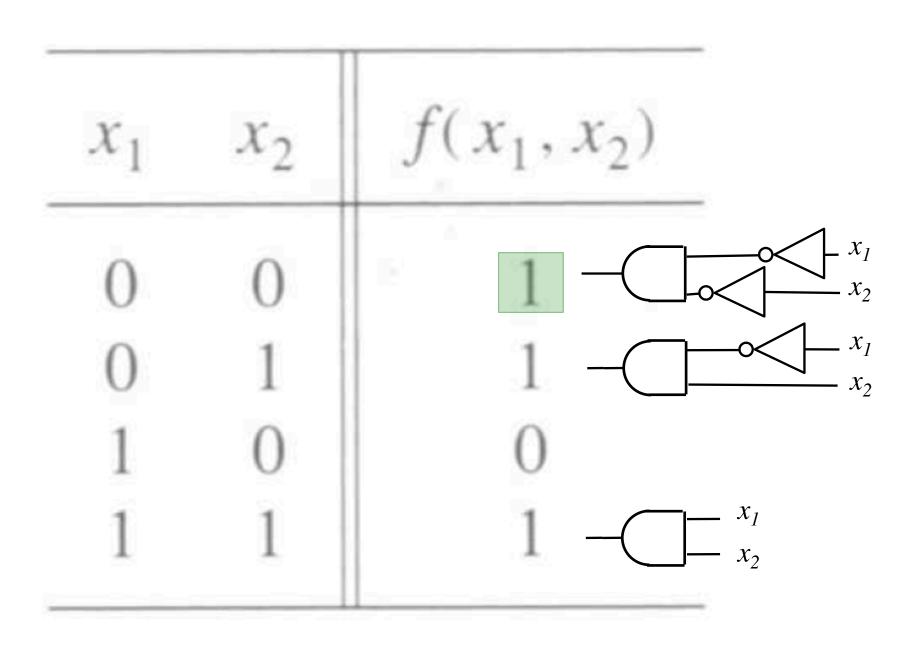

What about this row?

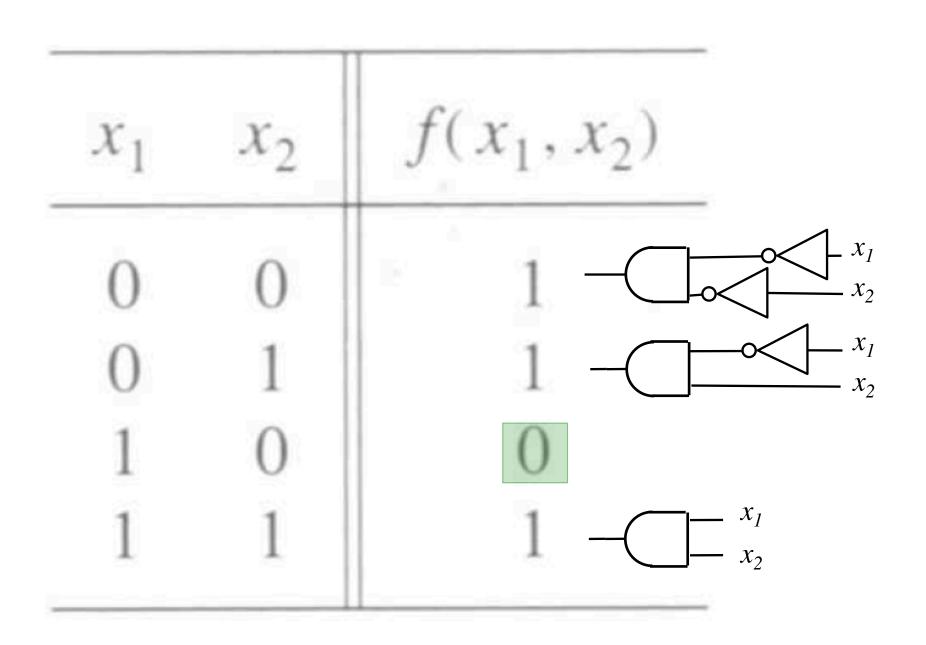
$f(x_1, x$	x_2	x_1
1	0	0
1	1	0
0	0	1
1 -	1	1

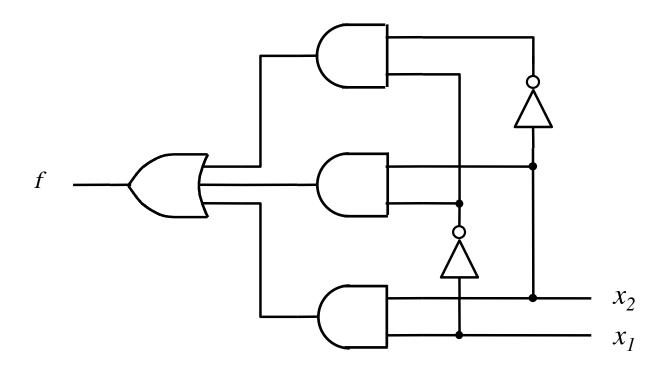

What about this row?

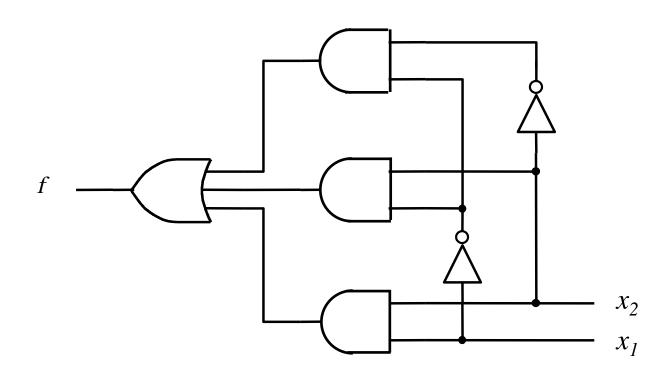
9	x_2	$f(x_1, x_2)$		
	0		1	
	1		1	$\overline{x}_1 x_2$
	0		0	
	1		1 -	

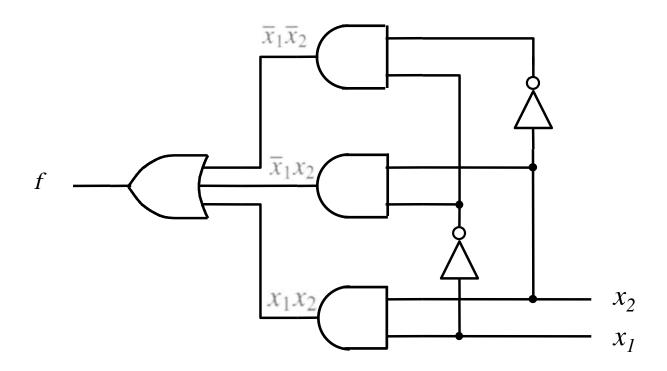

What about this row?

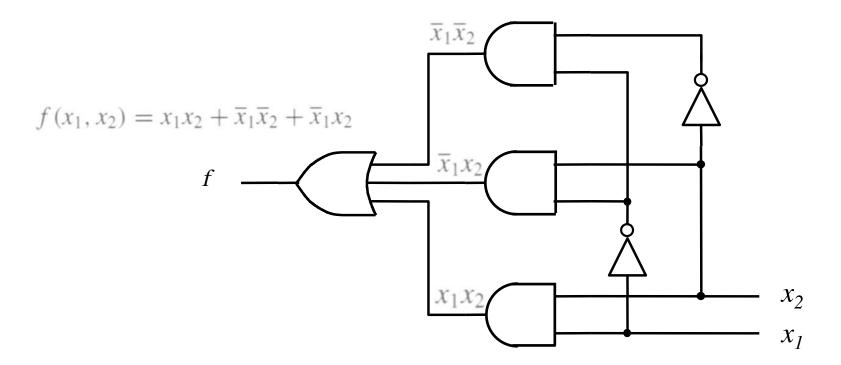

What about the first row?

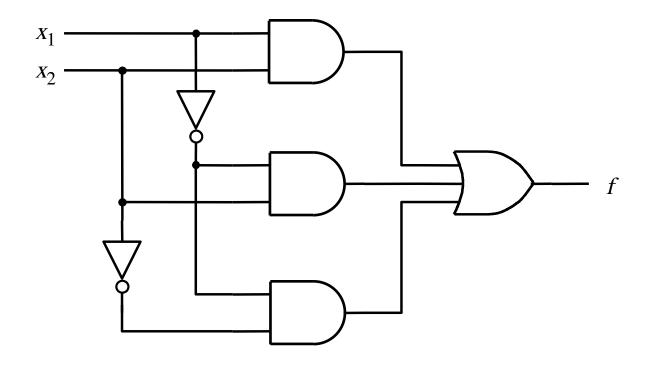

What about the first row?


What about the first row?


Finally, what about the zero?

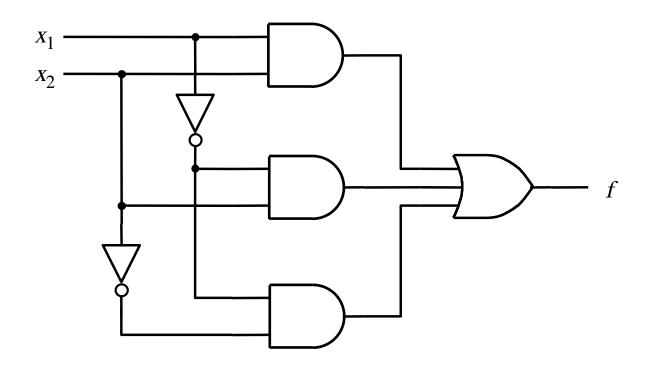

Putting it all together


Let's verify that this circuit implements correctly the target truth table

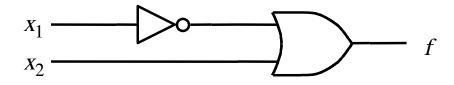

Putting it all together

Putting it all together

Canonical Sum-Of-Products (SOP)



$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$


Summary of This Procedure

- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if $x_i = 1$ enter it as x_i , otherwise use $\overline{x_i}$
- Sum all of these products (OR gate) to get the function

Two implementations for the same function

(a) Canonical sum-of-products

(b) Minimal-cost realization

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 \bar{x}_2$$
 replicate this term
$$f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + \bar{x}_1 x_2$$

$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 \qquad \text{group}$$
these terms

$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2$$
$$f(x_1, x_2) = (x_1 + \overline{x}_1) x_2 + \overline{x}_1 (\overline{x}_2 + x_2)$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2 + \overline{x}_1x_2$$

These two terms are trivially equal to 1

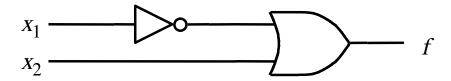
$$f(x_1, x_2) = (x_1 + \overline{x}_1)x_2 + \overline{x}_1(\overline{x}_2 + x_2)$$

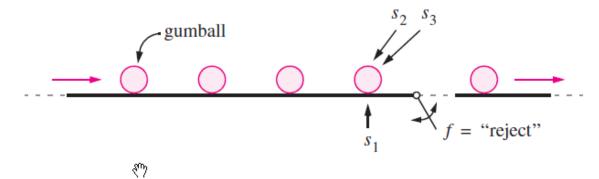
$$f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = (x_1 + \overline{x}_1)x_2 + \overline{x}_1(\overline{x}_2 + x_2)$$


$$f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$$


Drop the 1's

$$f(x_1, x_2) = x_2 + \overline{x}_1$$

Minimal-cost realization

$$f(x_1, x_2) = x_2 + \overline{x}_1$$

(a) Conveyor and sensors

<i>s</i> ₁	s_2	s_3	f
0	0	0	0
0			0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(b) Truth table

s_1	s_2	<i>s</i> ₃	f
			_
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

s_1	s_2	s_3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

s_1 s_2 s_3	f	
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0	0 1 0 1	$\overline{s}_1 \overline{s}_2 s_3$ $\overline{s}_1 s_2 s_3$
1 0 1	1	$S_1\overline{S}_2S_3$
1 1 0	1	S1S2S3
1 1 1	1	$S_1 S_2 S_3$

<i>s</i> ₁	s_2	s_3	f	
0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0	0 1 0 1 0	$\bar{s}_{1}\bar{s}_{2}s_{3}$ $\bar{s}_{1}\bar{s}_{2}s_{3}$ $s_{1}\bar{s}_{2}s_{3}$ $s_{1}s_{2}s_{3}$ $s_{1}s_{2}s_{3}$
				1 2 3

 $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$

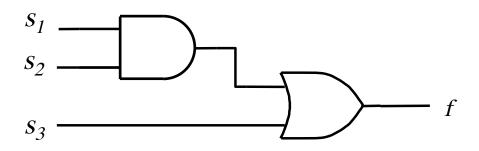
Let's look at another problem (minimization)

$$f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$$

$$= \bar{s}_1 \bar{s}_3 (\bar{s}_2 + s_2) + s_1 s_3 (\bar{s}_2 + s_2) + s_1 s_2 (\bar{s}_3 + s_3)$$

$$= \bar{s}_1 s_3 + s_1 s_3 + s_1 s_2$$

$$= s_3 + s_1 s_2$$


Let's look at another problem (minimization)

$$f = \overline{s_1}\overline{s_2}s_3 + \overline{s_1}s_2s_3 + s_1\overline{s_2}s_3 + s_1s_2s_3 + s_1s_2\overline{s_3} + s_1s_2s_3$$

$$= \overline{s_1}s_3(\overline{s_2} + s_2) + s_1s_3(\overline{s_2} + s_2) + s_1s_2(\overline{s_3} + s_3)$$

$$= \overline{s_1}s_3 + s_1s_3 + s_1s_2$$

$$= s_3 + s_1s_2$$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$

Use these for Sum-of-Products Minimization (1's of the function) Use these for Product-of-Sums Minimization (0's of the function)

(uses the ones of the function)

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \hline \end{array}$

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0 1 2 3	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2$ $m_1 = \overline{x}_1 x_2$ $m_2 = x_1 \overline{x}_2$ $m_3 = x_1 x_2$	$egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \hline \end{array}$

$$f(x_1, x_2) = m_3 = x_1 x_2$$

(In this case there is just one product and there is no need for a sum)

Another Example

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0 1 2 3	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	0 1 0 1		1 1 0 1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$0 \\ 1 \\ 0 \\ 1$	$egin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \ m_1 = \overline{x}_1 x_2 \ m_2 = x_1 \overline{x}_2 \ m_3 = x_1 x_2 \end{array}$	1 1 0 1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0	0	0	$m_0 = \overline{x}_1 \overline{x}_2$ $m_1 = \overline{x}_1 x_2$	1
$\frac{1}{2}$	1	0	$m_1 = x_1 x_2 \ m_2 = x_1 \overline{x_2} \ m_3 = x_1 x_2$	0
3	1	1	$m_3 = x_1 x_2$	1

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$

= $m_0 + m_1 + m_3$
= $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		0 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
0	0	0		0
1	0	1		1
2	1	0		1
3	1	1		1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	0 1 1 1

$$f(x_1, x_2) = M_0 = x_1 + x_2$$

(In this case there is just one sum and there is no need for a product)

Another Example

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$		$\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}$

We need to minimize using the zeros of the function f. But let's first minimize the inverse of f, i.e., \overline{f} .

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
0 1 2 3	0 0 1 1	0 1 0 1		0	0 0 1 0

Row number	x_1	x_2	Ma	xterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
0 1	0 0	0 1		$x_1 + x_2$ $x_1 + \overline{x_2}$	1 1	0 0
$\frac{2}{3}$	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	1		$\frac{\overline{x_1} + x_2}{\overline{x_1} + \overline{x_2}}$	$egin{array}{c} 0 \ 1 \end{array}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\overline{f}(x_1, x_2) = m_2$$

= $x_1 \overline{x}_2$

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}$	0 0 1 0

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x}_2}$$
 $\overline{f}(x_1, x_2) = m_2$
= $\overline{x}_1 + x_2$ = $x_1 \overline{x}_2$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	0 0 1	0 1 0	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	0 0 1
3	1	1	$ M_3 = \overline{x_1} + \overline{x_2} $	1	0

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x}_2}$$
 $\overline{f}(x_1, x_2) = m_2$
= $\overline{x}_1 + x_2$ = $x_1 \overline{x}_2$

$$f = \overline{m}_2 = M_2$$

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

A three-variable function

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2 3	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products Form

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
5	1	1	0	1
7	1	1	1	0

Sum-of-Products Form

Row number	<i>x</i> ₁	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \bar{x}_1 \bar{x}_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 \bar{x}_2 x_3 + x_1 x_2 \bar{x}_3$$

Sum-of-Products Form

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \bar{x}_1 \bar{x}_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 \bar{x}_2 x_3 + x_1 \bar{x}_2 \bar{x}_3$$

$$f = (\overline{x}_1 + x_1)\overline{x}_2x_3 + x_1(\overline{x}_2 + x_2)\overline{x}_3$$

= $1 \cdot \overline{x}_2x_3 + x_1 \cdot 1 \cdot \overline{x}_3$
= $\overline{x}_2x_3 + x_1\overline{x}_3$

A three-variable function

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2 3	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	O
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = \overline{m_0 + m_2 + m_3 + m_7}$$

$$= \overline{m_0} \cdot \overline{m_2} \cdot \overline{m_3} \cdot \overline{m_7}$$

$$= M_0 \cdot M_2 \cdot M_3 \cdot M_7$$

$$= (x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + \overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2} + \overline{x_3})$$

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = ((x_1 + x_3) + x_2)((x_1 + x_3) + \overline{x}_2)(x_1 + (\overline{x}_2 + \overline{x}_3))(\overline{x}_1 + (\overline{x}_2 + \overline{x}_3))$$

$$f = (x_1 + x_3)(\overline{x}_2 + \overline{x}_3)$$

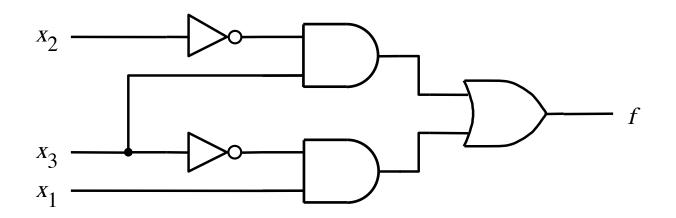
Shorthand Notation

Sum-of-Products

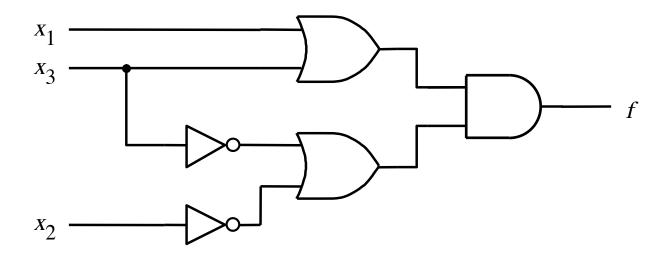
$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$


Product-of-sums

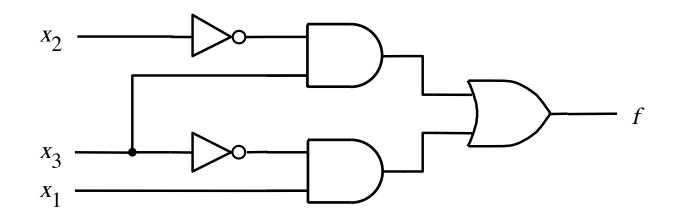
$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$


or

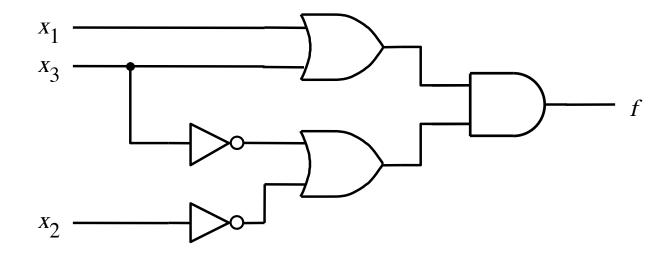
$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

Two realizations of that function

(a) A minimal sum-of-products realization

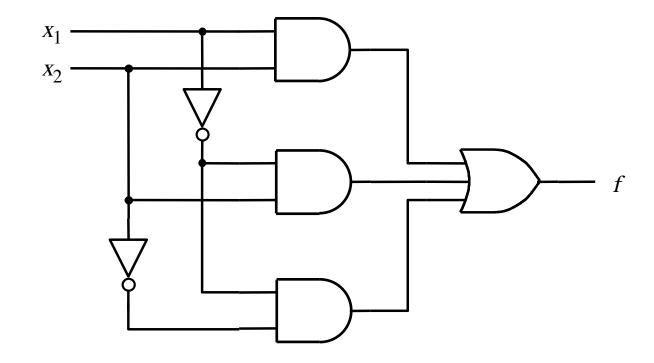


(b) A minimal product-of-sums realization


The Cost of a Circuit

- Count all gates
- Count all inputs/wires to the gates

What is the cost of each circuit?



(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

What is the cost of this circuit?

Questions?

THE END