

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 11 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, please
 - Staple your pages

Administrative Stuff

TA Office Hours:

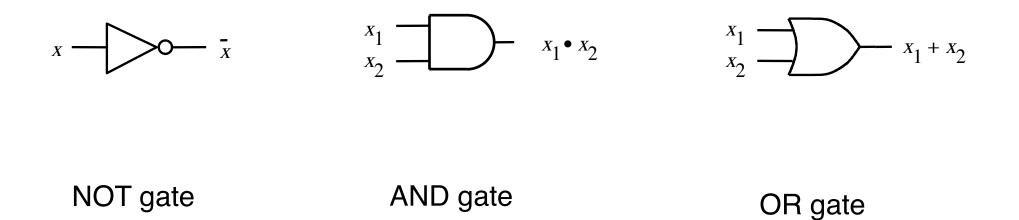
- 5:00 pm 6:00 pm on Tuesdays (Vahid Sanei-Mehri) Location: 3125 Coover Hall
- 11:10 am-1:10 pm on Wednesdays (Siyuan Lu) Location: TLA (Coover Hall - first floor)
- 5:00 pm 6:00 pm on Thursdays (Vahid Sanei-Mehri) Location: 3125 Coover Hall
- 10:00 am-12:00 pm on Fridays (Krishna Teja) Location: 3214 Coover Hall

Administrative Stuff

Homework Solutions will be posted on BlackBoard

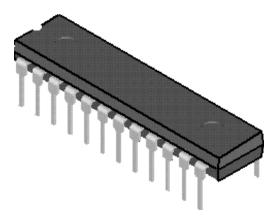
Quick Review

The Three Basic Logic Gates

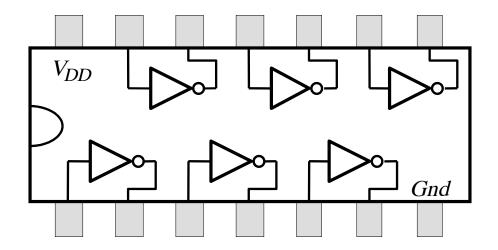


You can build any circuit using only these three gates

[Figure 2.8 from the textbook]



(a) Dual-inline package



(b) Structure of 7404 chip

Figure B.21. A 7400-series chip.

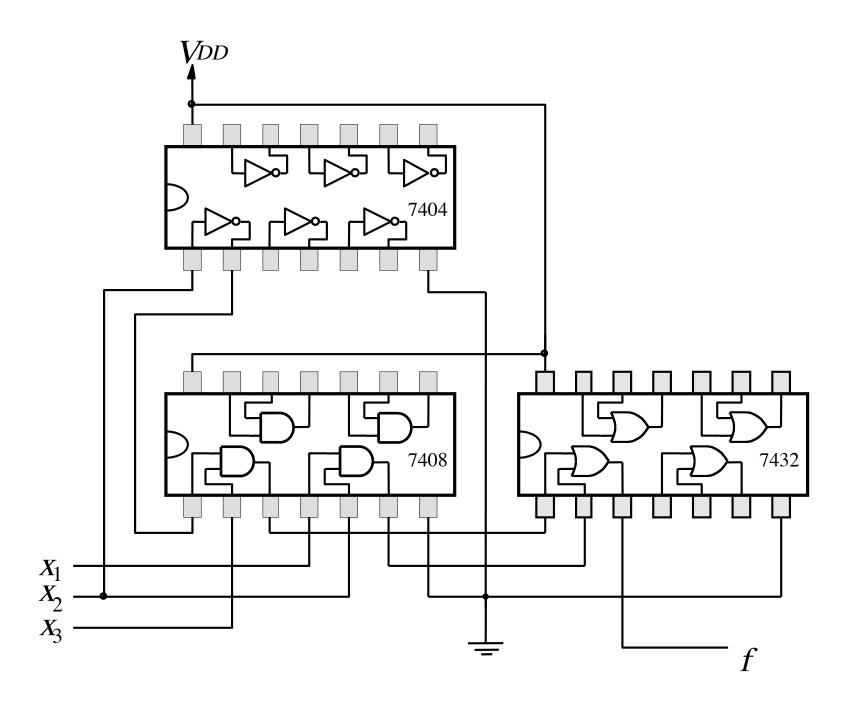
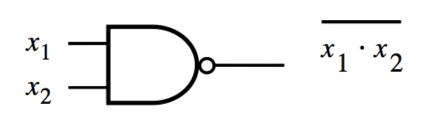
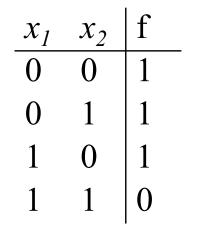
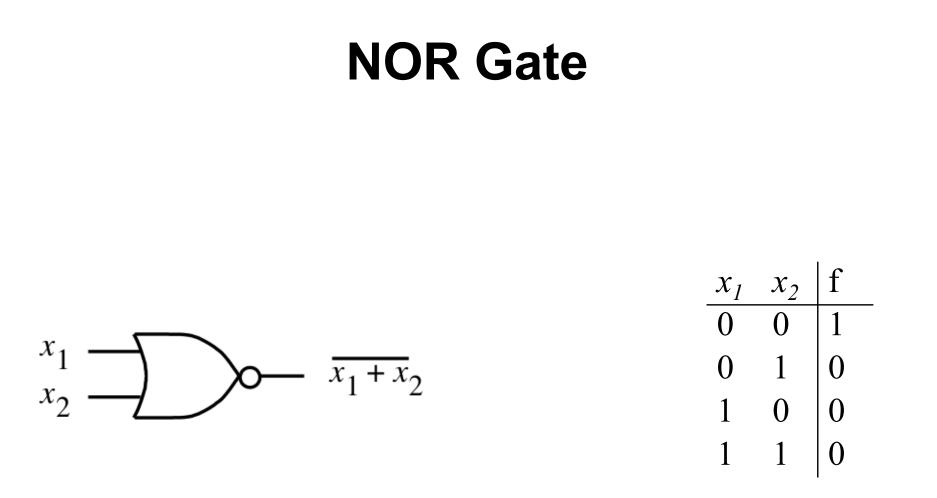


Figure B.22. An implementation of $f = x_1x_2 + \overline{x}_2x_3$.

NAND Gate





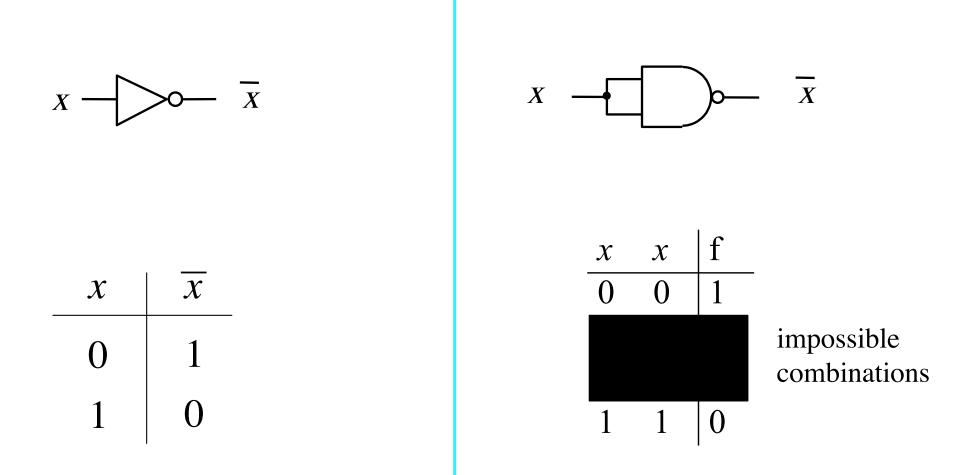


Why do we need two more gates?

They can be implemented with fewer transistors.

(more about this later)

Building a NOT Gate with NAND



Thus, the two truth tables are equal!

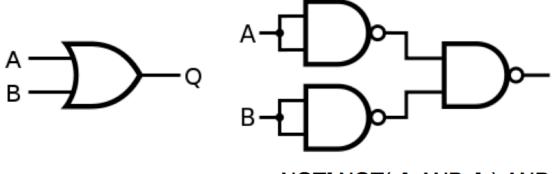
Building an AND gate with NAND gates

Desired AND Gate NAND Construction А ٠Q () В B Q = A AND B = NOT(NOT(**A** AND **B**)) **Truth Table** Input A Input B **Output Q** 0 0 0 0 0 1 0 0 1 1 1 1

Building an OR gate with NAND gates

Desired OR Gate

NAND Construction



Q = **A** OR **B**

= NOT[NOT(**A** AND **A**) AND NOT(**B** AND **B**)]

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

О

Implications

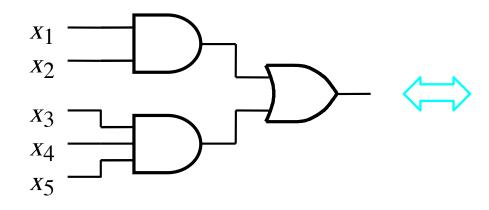
Any Boolean function can be implemented with only NAND gates!

Implications

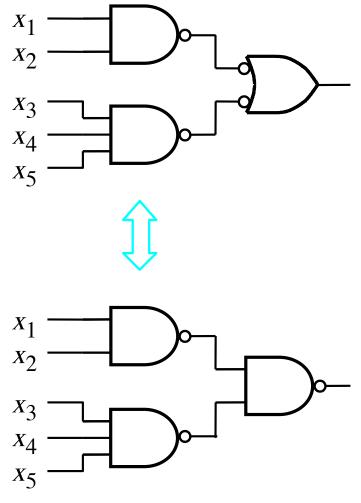
Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!

NAND-NAND Implementation of Sum-of-Products Expressions



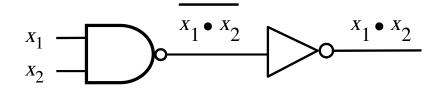
This circuit uses ANDs & OR

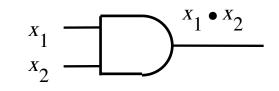


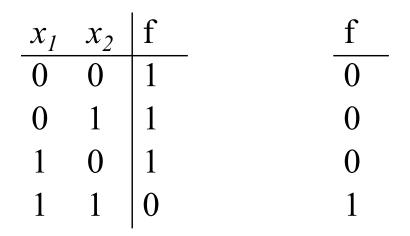
This circuit uses only NANDs

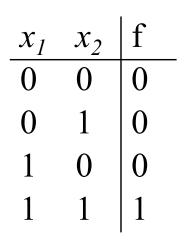
[Figure 2.27 from the textbook]

NAND followed by NOT = AND





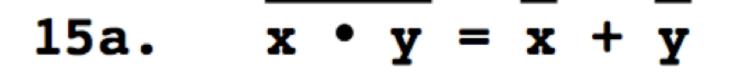


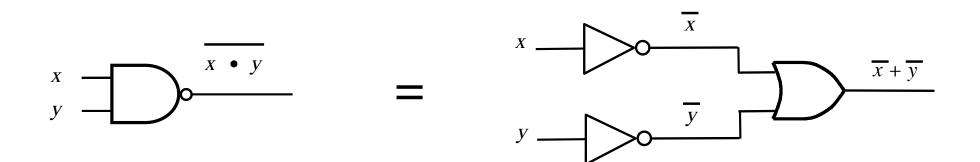


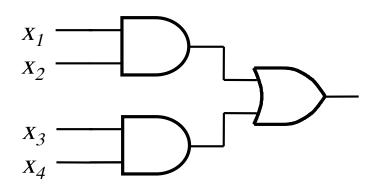
DeMorgan's Theorem

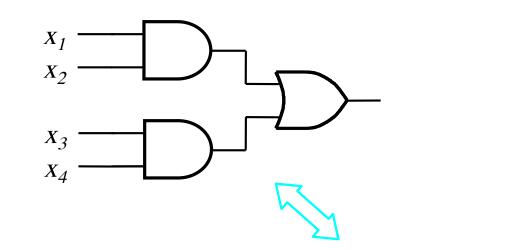
15a. $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$

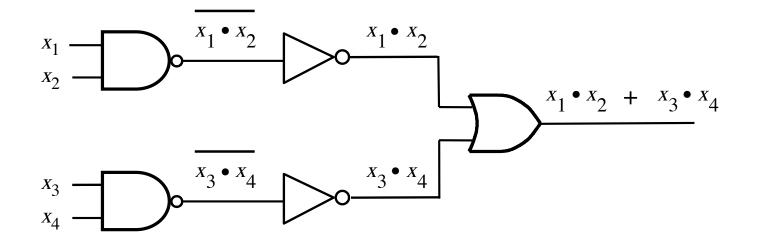
DeMorgan's Theorem

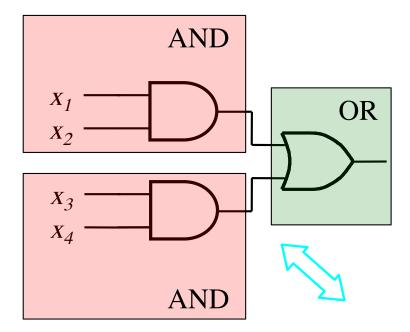


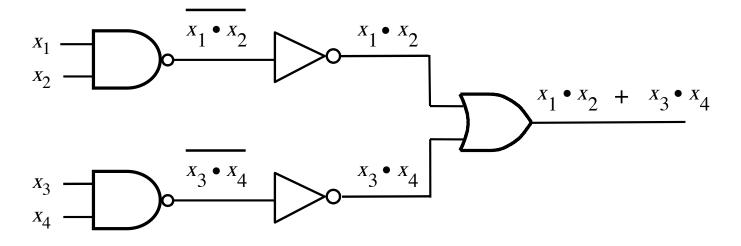


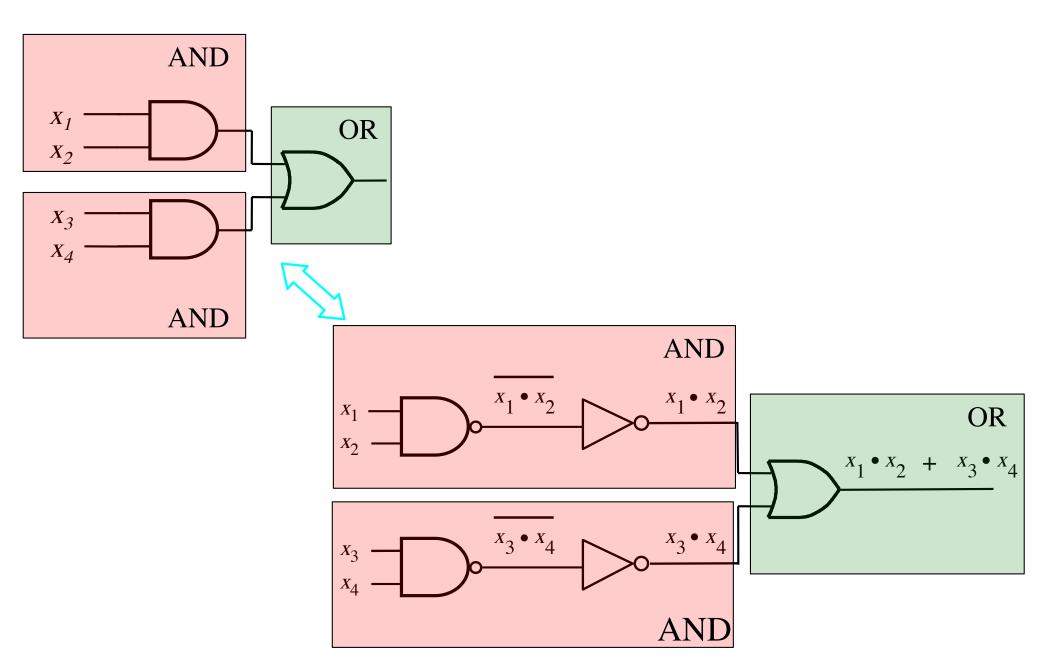


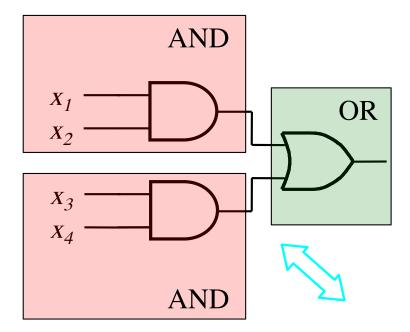


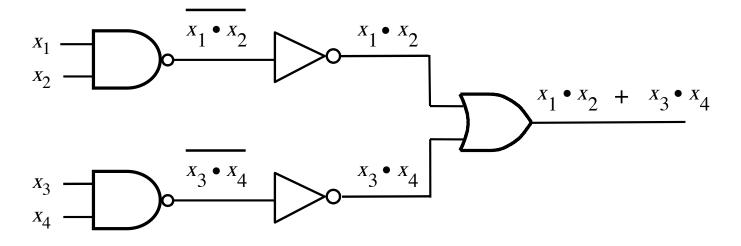


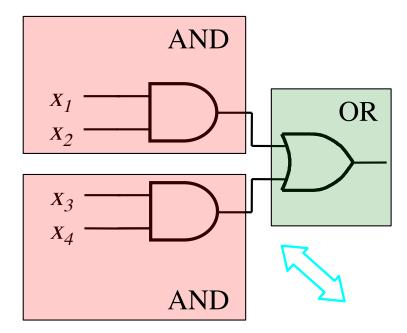


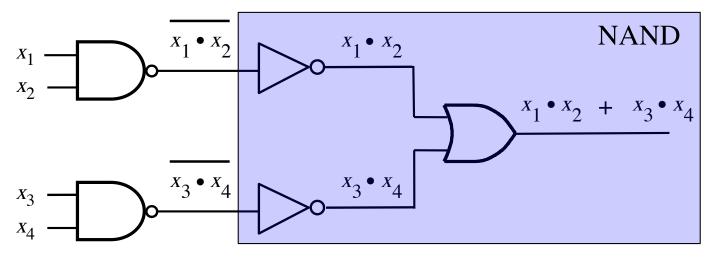


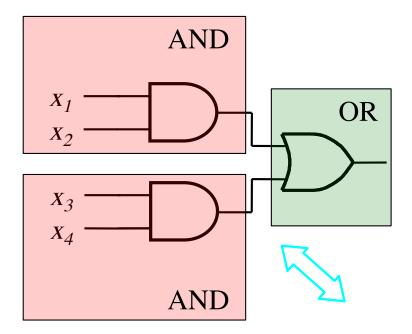


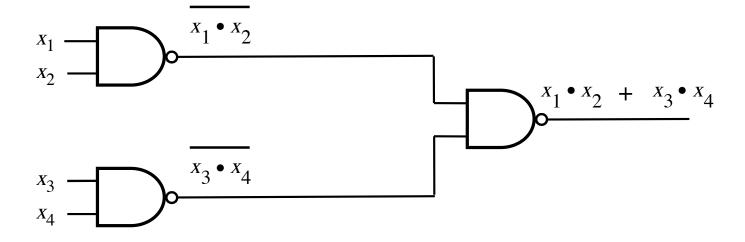


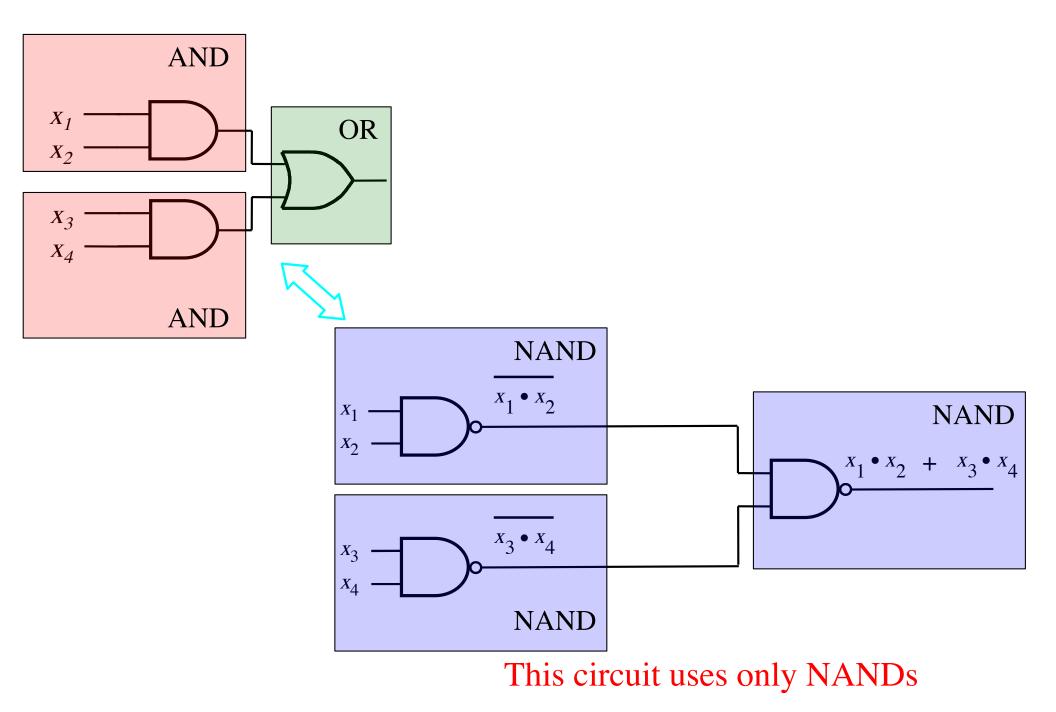


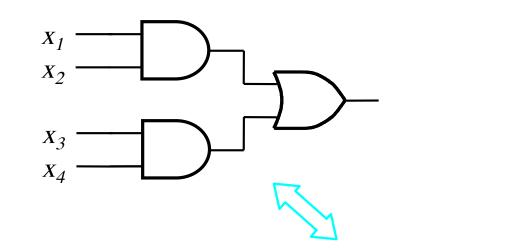


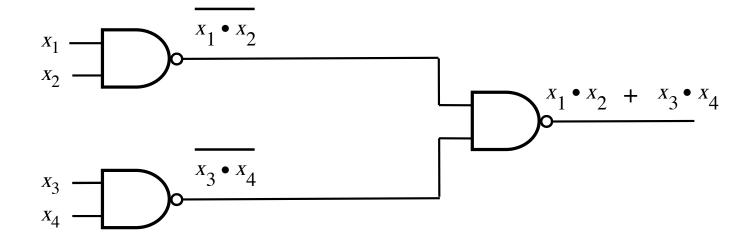








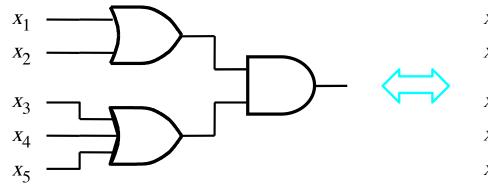




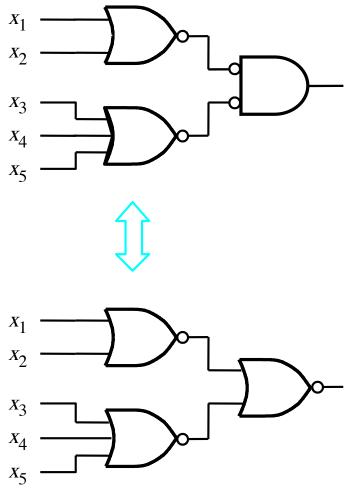
This circuit uses only NANDs

NOR-NOR Implementation of Product-of-Sums Expressions

Product-Of-Sums



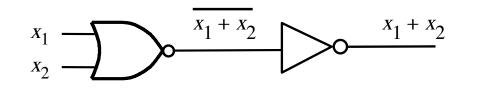
This circuit uses ORs & AND



This circuit uses only NORs

[Figure 2.28 from the textbook]

NOR followed by NOT = OR

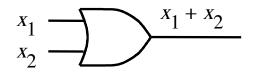


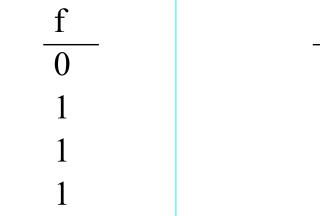
f

 x_2

1 0

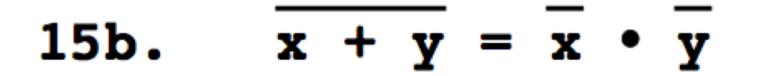
 x_{l}



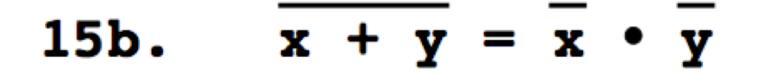


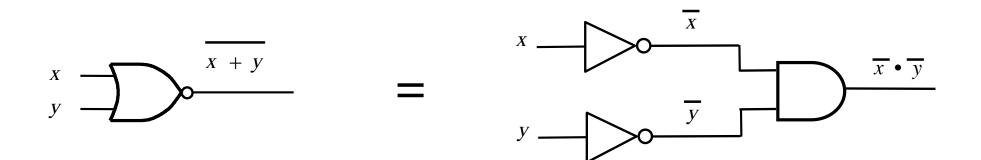
$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

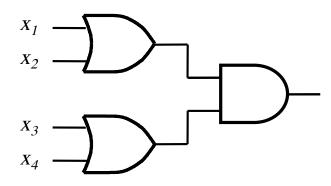
DeMorgan's Theorem

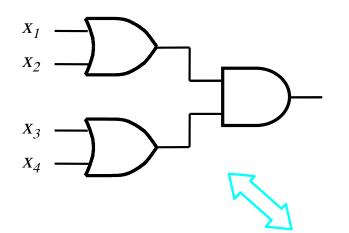


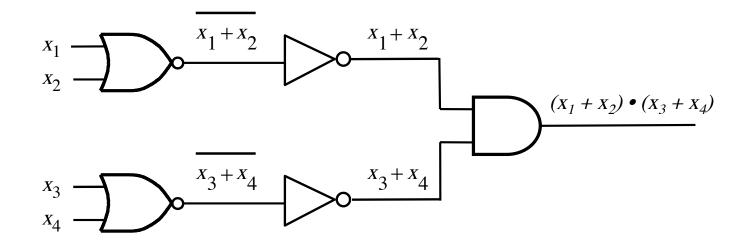
DeMorgan's Theorem

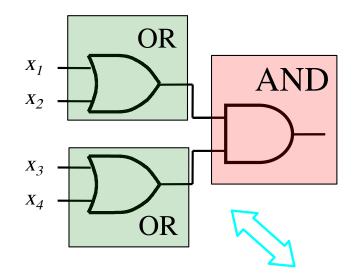


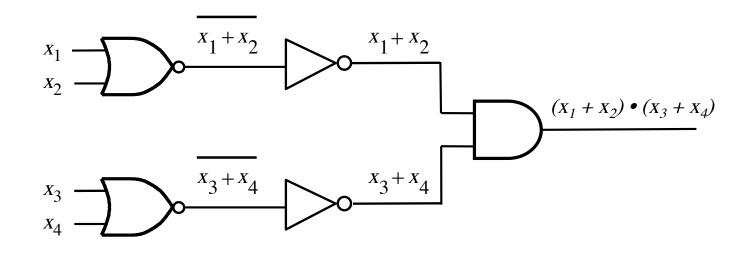


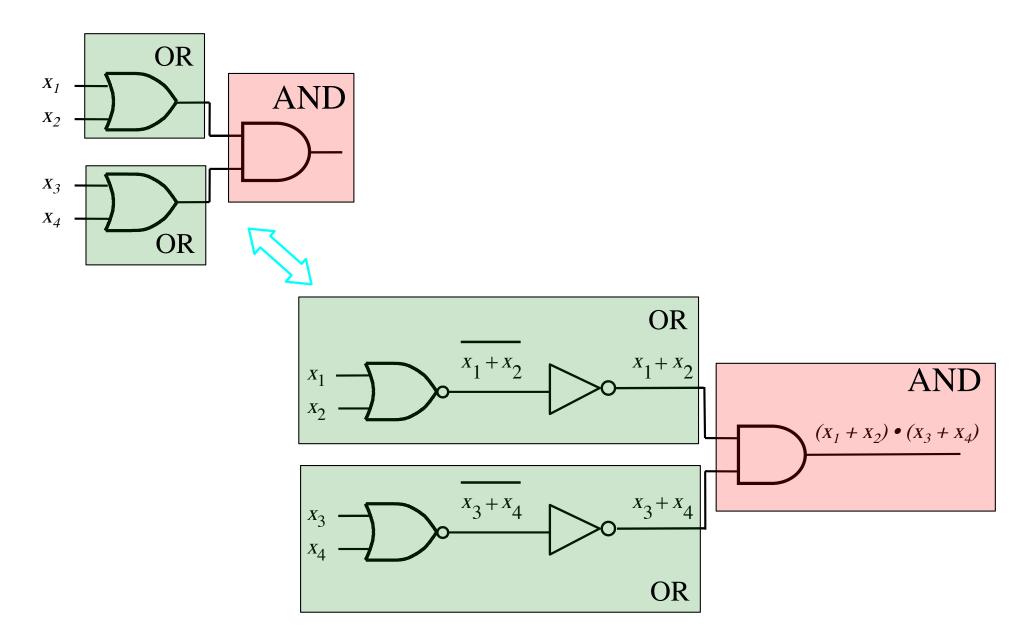


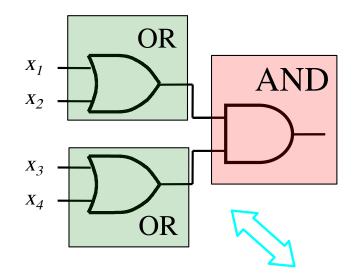


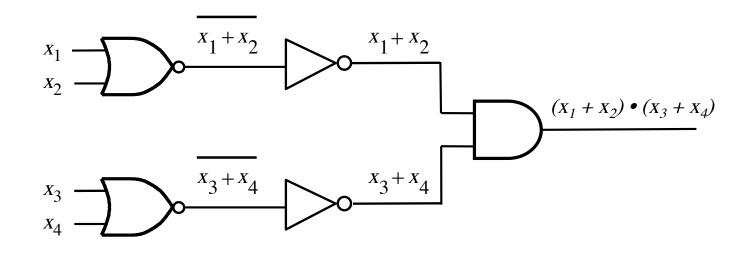


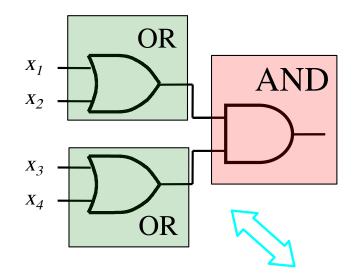


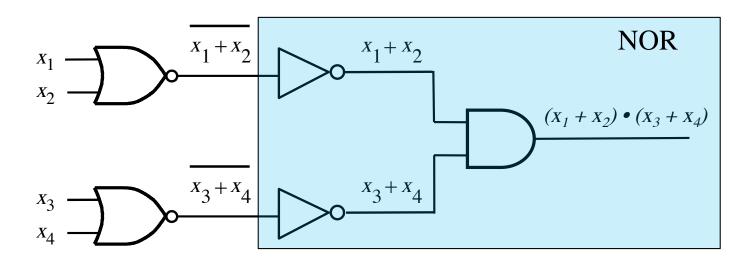


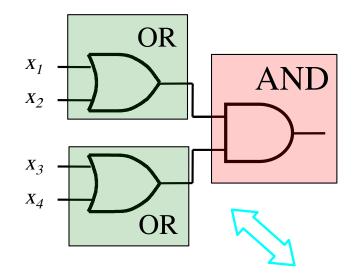


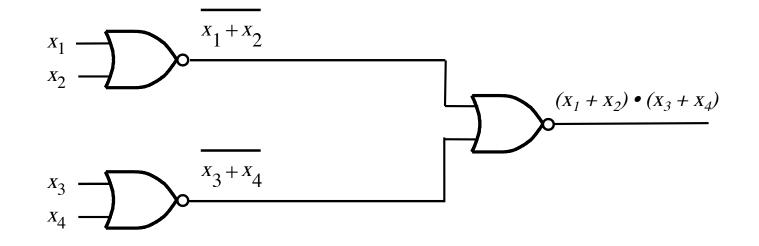


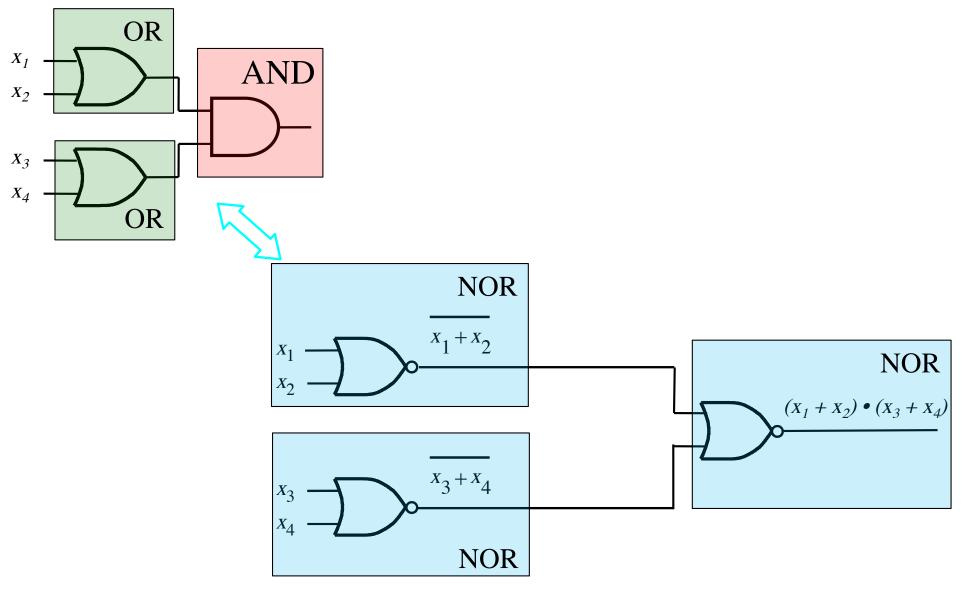




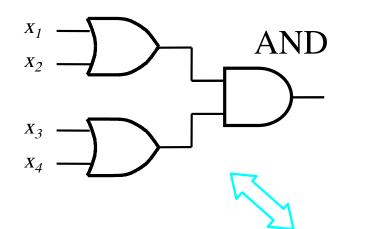


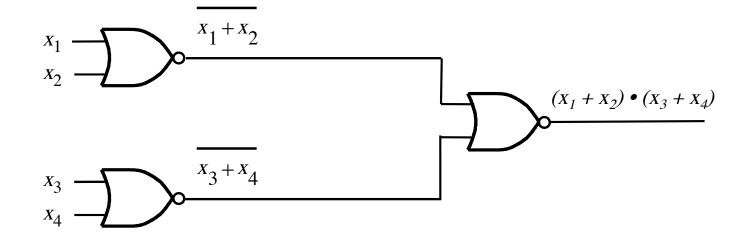






This circuit uses only NORs

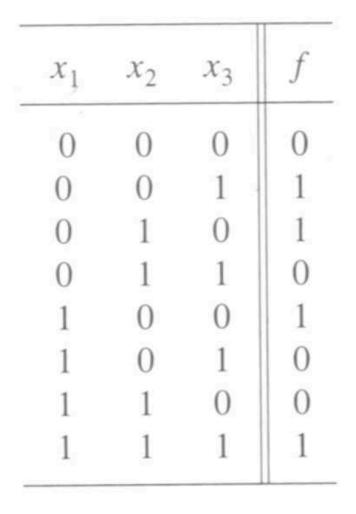




This circuit uses only NORs

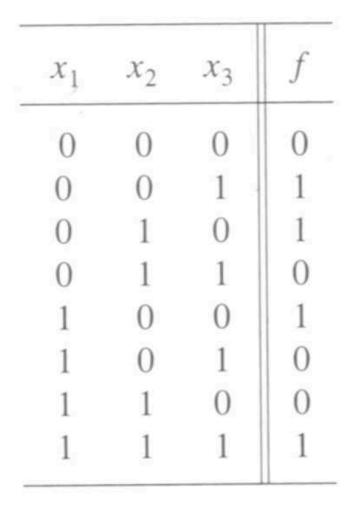
Another Synthesis Example

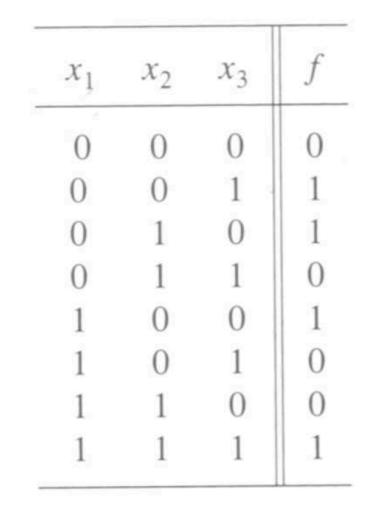
Truth table for a three-way light control



Minterms and Maxterms (with three variables)

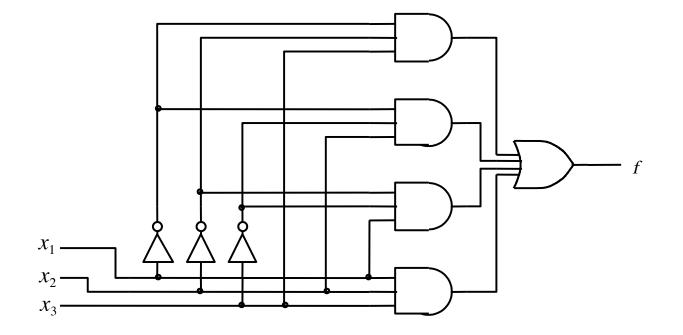
Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 \overline{x}_3 \\ m_6 = x_1 \overline{x}_2 \overline{x}_3 \\ m_7 = x_1 x_2 x_3 \end{vmatrix} $	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$



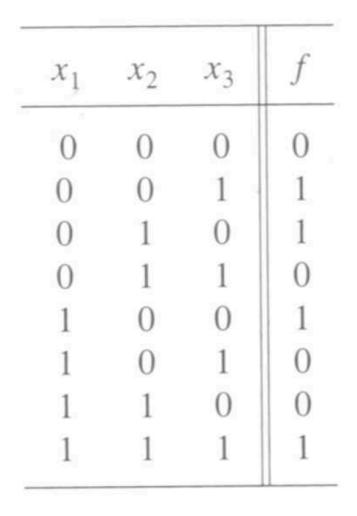


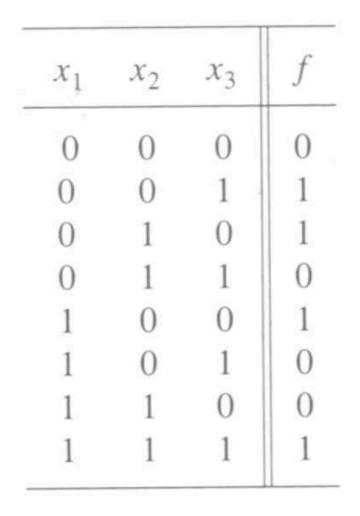
 $f = m_1 + m_2 + m_4 + m_7$ = $\overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$

Sum-of-products realization



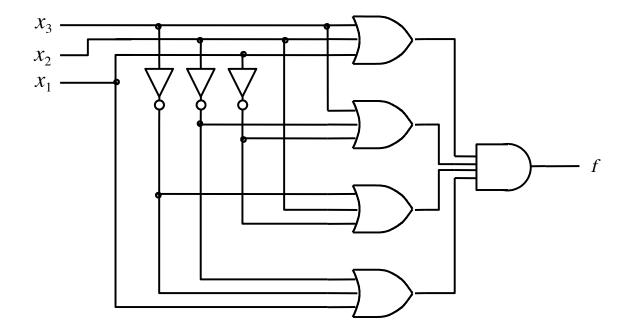
[Figure 2.32a from the textbook]





 $f = M_0 \cdot M_3 \cdot M_5 \cdot M_6$ = $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$

Product-of-sums realization



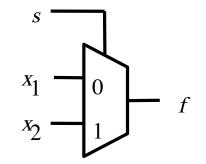
[Figure 2.32b from the textbook]

Multiplexers

2-1 Multiplexer (Definition)

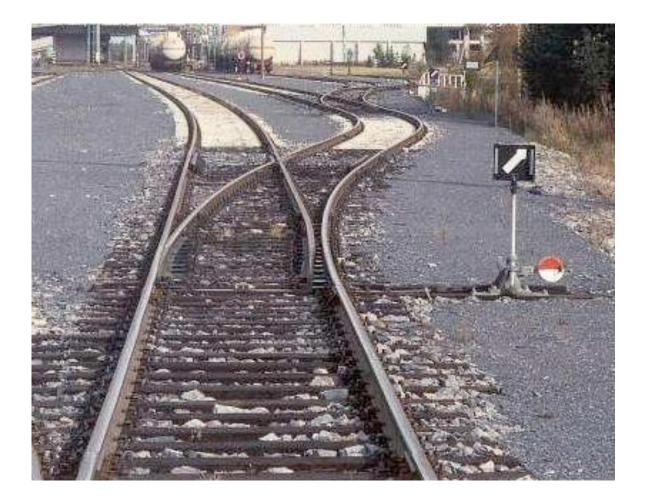
- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x_1
- If s=1, then the output is equal to x_2

Graphical Symbol for a 2-1 Multiplexer



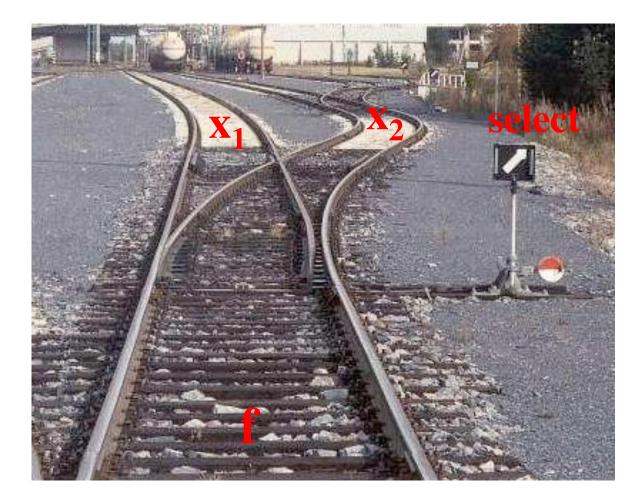
[Figure 2.33c from the textbook]

Analogy: Railroad Switch



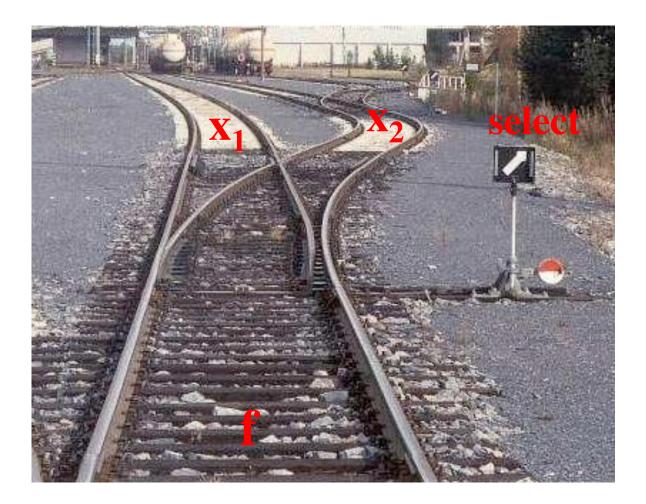
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

http://en.wikipedia.org/wiki/Railroad_switch]

Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

 $\overline{s} x_1 \overline{x}_2$

 $\overline{s} x_1 x_2$

 $s \overline{x_1} x_2$

 $S X_1 X_2$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$

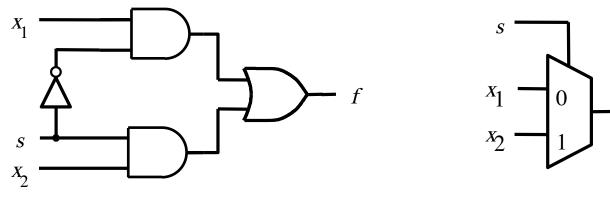
Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

Circuit for 2-1 Multiplexer



(b) Circuit

(c) Graphical symbol

f

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

[Figure 2.33b-c from the textbook]

More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

S	$f(s, x_1, x_2)$
0	x_1
1	<i>x</i> ₂

(a)Truth table

4-1 Multiplexer (Definition)

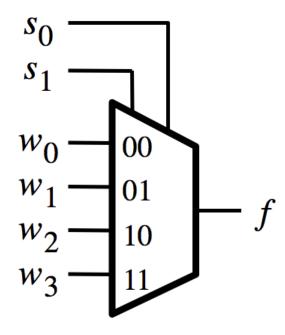
- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

4-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

We'll talk more about this when we get to chapter 4, but here is a quick preview.

Graphical Symbol and Truth Table



<i>s</i> ₁	<i>s</i> 0	f
0	0	w ₀
0	1	w_1
1	0	<i>w</i> ₂
1	1	<i>w</i> ₃

(a) Graphic symbol

(b) Truth table

$S_{1}S_{0}$	I3]	I2	I_1	Io	F	S_1	S_0	I3	I_2	I_1	I_0	F	S_1	S_0	I3	I_2	I_1	I ₀	F	S	$s_1 S$	0	I3	I ₂	I_1	I ₀	F
0 0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	;	L I	L.	0	0	0	0	0
	0	0	0	1	1			0	0	0	1	0			0	0	0	1	0				0	0	0	1	0
	0	0	1	0	0			0	0	1	0	1			0	0	1	0	0				0	0	1	0	0
	0	0	1	1	1			0	0	1	1	1			0	0	1	1	0				0	0	1	1	0
	0	1	0	0	0			0	1	0	0	0			0	1	0	0	1				0	1	0	0	0
	0	1	0	1	1			0	1	0	1	0			0	1	0	1	1				0	1	0	1	0
	0	1	1	0	0			0	1	1	0	1			0	1	1	0	1				0	1	1	0	0
	0	1	1	1	1			0	1	1	1	1			0	1	1	1	1				0	1	1	1	0
	1	0	0	0	0			1	0	0	0	0			1	0	0	0	0				1	0	0	0	1
	1	0	0	1	1			1	0	0	1	0			1	0	0	1	0				1	0	0	1	1
	1	0	1	0	0			1	0	1	0	1			1	0	1	0	0				1	0	1	0	1
	1	0	1	1	1			1	0	1	1	1			1	0	1	1	0				1	0	1	1	1
	1	1	0	0	0			1	1	0	0	0			1	1	0	0	1				1	1	0	0	1
	1	1	0	1	1			1	1	0	1	0			1	1	0	1	1				1	1	0	1	1
	1	1	1	0	0			1	1	1	0	1			1	1	1	0	1				1	1	1	0	1
	1	1	1	1	1			1	1	1	1	1			1	1	1	1	1				1	1	1	1	1

S_1S_0	I ₃	I_2	I_1	Io	F	S_1	S_0	I3	I_2	I_1	I_0	F	1	S_1	S_0	I3	I_2	I_1	I_0	F	S	$1 S_0$	I ₃	I ₂	I_1	I ₀	F
0 0	0	0	0	0	0	0	1	0	0	0	0	0		1	0	0	0	0	0	0	1	1	0	0	0	0	0
	0	0	0	1	1			0	0	0	1	0				0	0	0	1	0			0	0	0	1	0
	0	0	1	0	0			0	0	1	0	1				0	0	1	0	0			0	0	1	0	0
	0	0	1	1	1			0	0	1	1	1				0	0	1	1	0			0	$_{0}$	1	1	0
	0	1	0	0	0			0	1	0	0	0				0	1	0	0	1			0	1	0	0	0
	0	1	0	1	1			0	1	0	1	0				0	1	0	1	1			0	1	0	1	0
	0	1	1	0	0			0	1	1	0	1				0	1	1	0	1			0	1	1	0	0
	0	1	1	1	1			0	1	1	1	1				0	1	1	1	1			0	1	1	1	0
	1	0	0	0	0			1	0	0	0	0				1	0	0	0	0			1	0	0	0	1
	1	0	0	1	1			1	0	0	1	0				1	0	0	1	0			1	0	0	1	1
	1	0	1	0	0			1	0	1	0	1				1	0	1	0	0			1	0	1	0	1
	1	0	1	1	1			1	0	1	1	1				1	0	1	1	0			1	0	1	1	1
	1	1	0	0	0			1	1	0	0	0				1	1	0	0	1			1	1	0	0	1
	1	1	0	1	1			1	1	0	1	0				1	1	0	1	1			1	1	0	1	1
	1	1	1	0	0			1	1	1	0	1				1	1	1	0	1			1	1	1	0	1
	1	1	1	1	1			1	1	1	1	1				1	1	1	1	1			1	1	1	L	1

[http://www.absoluteastronomy.com/topics/Multiplexer]

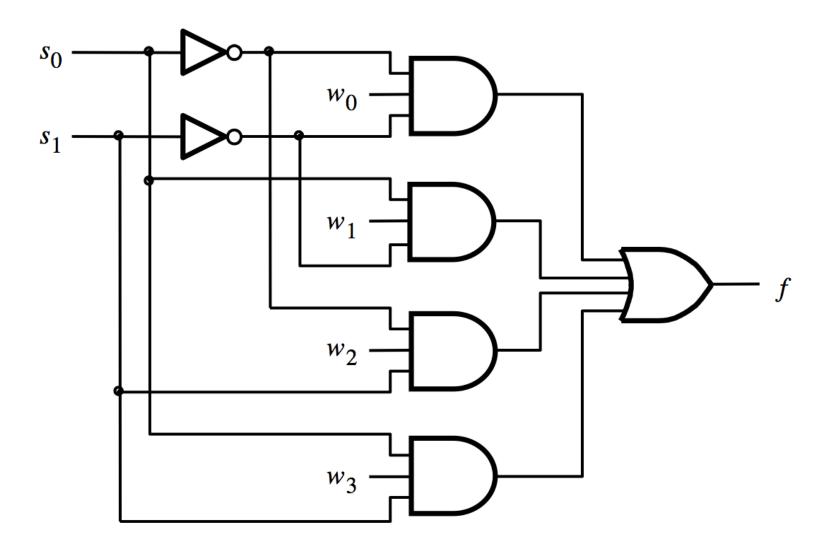
S_1S_0	I ₃ I ₂	I ₁ I ₀	F	S_1S_0	I3	I_2	I_1	I_0	F	S_1S_0	I ₃	I_2	I_1	I_0	F	S_1	S_0	I3	I_2	I_1	Io	F
0 0	0 0	0 0	0	0 1	0	0	0	0	0	1 0	0	0	0	0	0	1	1	0	0	0	0	0
	0 0	0 1	1		0	0	0	1	0		0	0	0	1	0			0	0	0	1	0
	0 0	1 0	0		0	0	1	0	1		0	0	1	0	0			0	0	1	0	0
	0 0	1 1	1		0	0	1	1	1		0	0	1	1	0			0	0	1	1	0
	0 1	0 0	0		0	1	0	0	0		0	1	0	0	1			0	1	0	0	0
	0 1	0 1	1		0	1	0	1	0		0	1	0	1	1			0	1	0	1	0
	0 1	1 0	0		0	1	1	0	1		0	1	1	0	1			0	1	1	0	0
	0 1	1 1	1		0	1	1	1	1		0	1	1	1	1			0	1	1	1	0
	1 0	0 0	0		1	0	0	0	0		1	0	0	0	0			1	0	0	0	1
	1 0	0 1	1		1	0	0	1	0		1	0	0	1	0			1	0	0	1	1
	1 0	1 0	0		1	0	1	0	1		1	0	1	0	0			Т	0	1	0	1
	1 0	1 1	1		1	0	1	1	1		1	$_{0}$	1	1	0			1	0	1	1	1
	1 1	0 0	0		1	1	0	0	0		1	1	0	0	1			1	1	0	0	1
	1.1	0 1	1		1	1	0	1	0		1	1	0	1	1			1	1	0	1	1
	1 1	1 0	0		1	1	1	0	1		1	1	1	0	1			1	1	1	0	1
	1 1	1 1	1		1	1	1	1	1		1	1	1	1	1			1	1	1	1	1

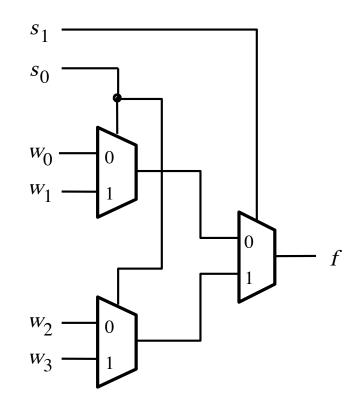
[http://www.absoluteastronomy.com/topics/Multiplexer]

S_1S_0	I ₃	I2	I_1	I_0	F	_	S_1	S_0	I3	I_2	I_1	I_0	F	S_1	S_0	I3	I_2	I_1	I_0	F	S	$s_1 S$	0	I3	I_2	I_1	I ₀	F
0 0	0	0	0	0	0	_	0	1	0	0	0	0	0	1	0	0	0	0	0	0	;	1 1		0	0	0	0	0
	0	0	0	1	1				0	0	0	1	0			0	0	0	1	0				0	0	0	т	0
	0	0	1	0	0				0	0	1	0	1			0	0	1	0	0				0	0	1	0	0
	0	0	1	1	1				0	0	1	1	1			0	0	1	1	0				0	0	1	1	0
	0	1	0	0	0				0	1	0	0	0			0	1	0	0	1				0	1	0	0	0
	0	1	0	1	1				0	1	0	1	0			0	1	0	1	1				0	1	0	1	0
	0	1	1	0	0				0	1	1	0	1			0	1	1	0	1				0	1	1	0	0
	0	1	1	1	1				0	1	1	1	1			0	1	1	1	1				0	1	1	1	0
	1	0	0	0	0				1	0	0	0	0			1	0	0	0	0				1	0	0	0	1
	1	0	0	1	1				1	0	0	1	0			1	0	0	1	0				1	0	0	1	1
	1	0	1	0	0				1	0	1	0	1			1	0	1	0	0				I.	0	1	0	1
	1	0	1	1	1				1	0	1	1	1			1	$_{0}$	1	1	0				1	0	1	т	1
	1	1	0	0	0				1	1	0	0	0			1	1	0	0	1				1	1	0	0	1
	1	1	0	1	1				1	1	0	1	0			1	1	0	1	1				1	1	0	1	1
	1	1	1	0	0				1	1	1	0	1			1	1	1	0	1				1	1	1	0	1
	1	1	1	1	1				1	1	1	1	1			1	1	1	1	1				1	1	1	1	1

[http://www.absoluteastronomy.com/topics/Multiplexer]

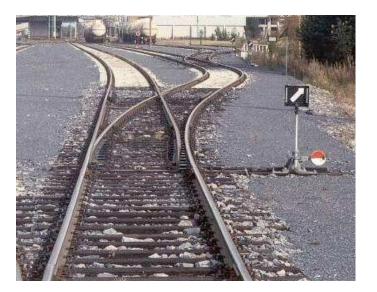
4-1 Multiplexer (SOP circuit)





Analogy: Railroad Switches

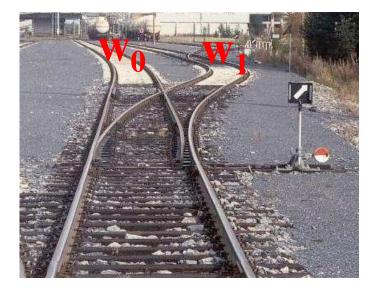


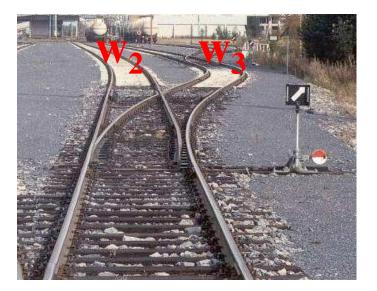


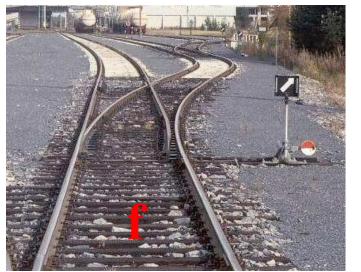


http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches



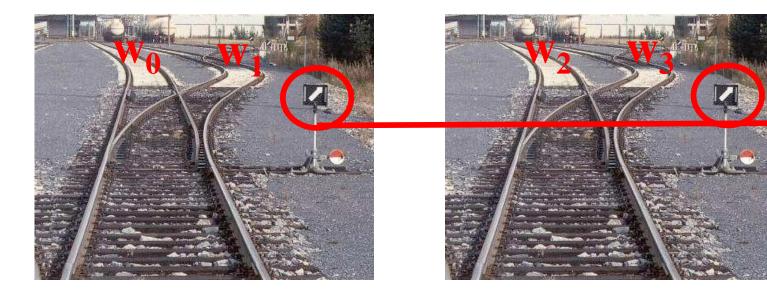




S₁

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches



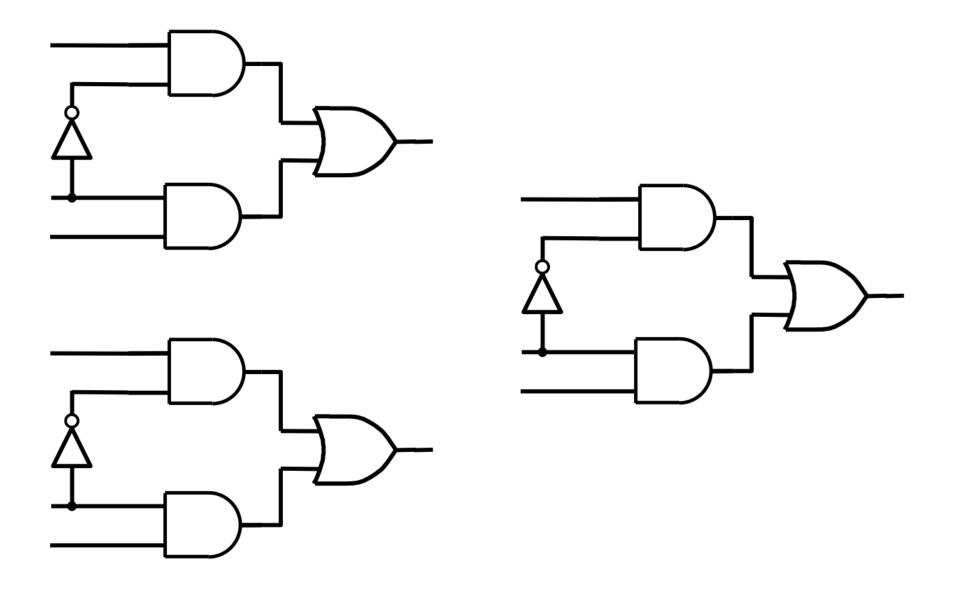
S₀

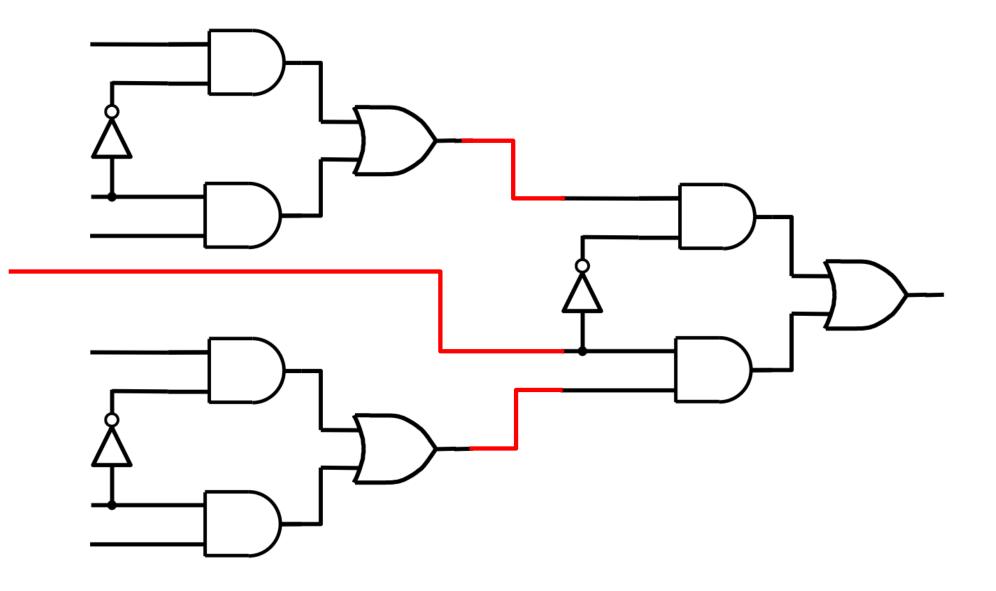
these two switches are controlled together

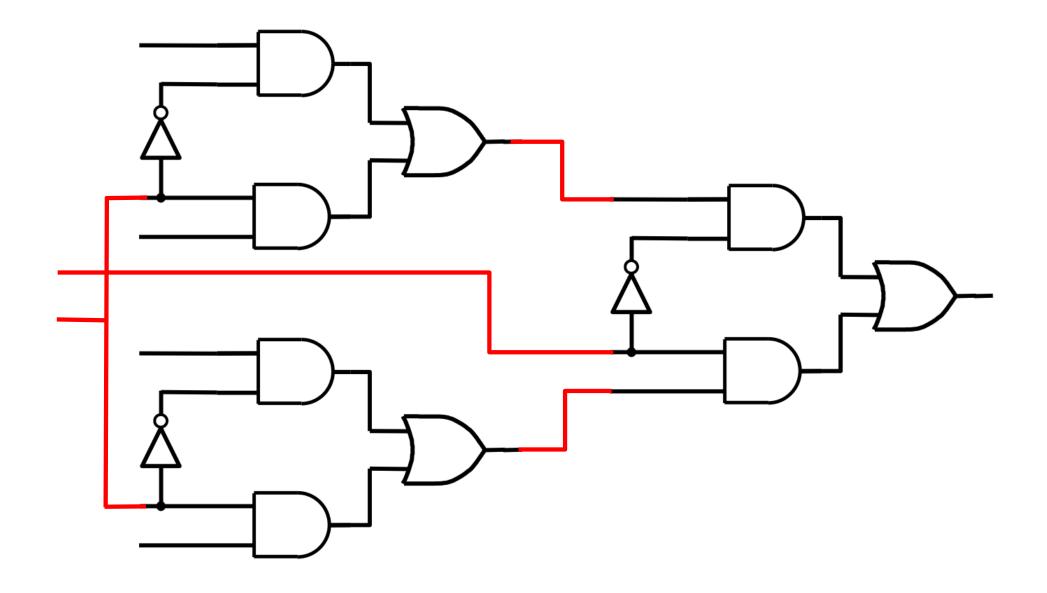


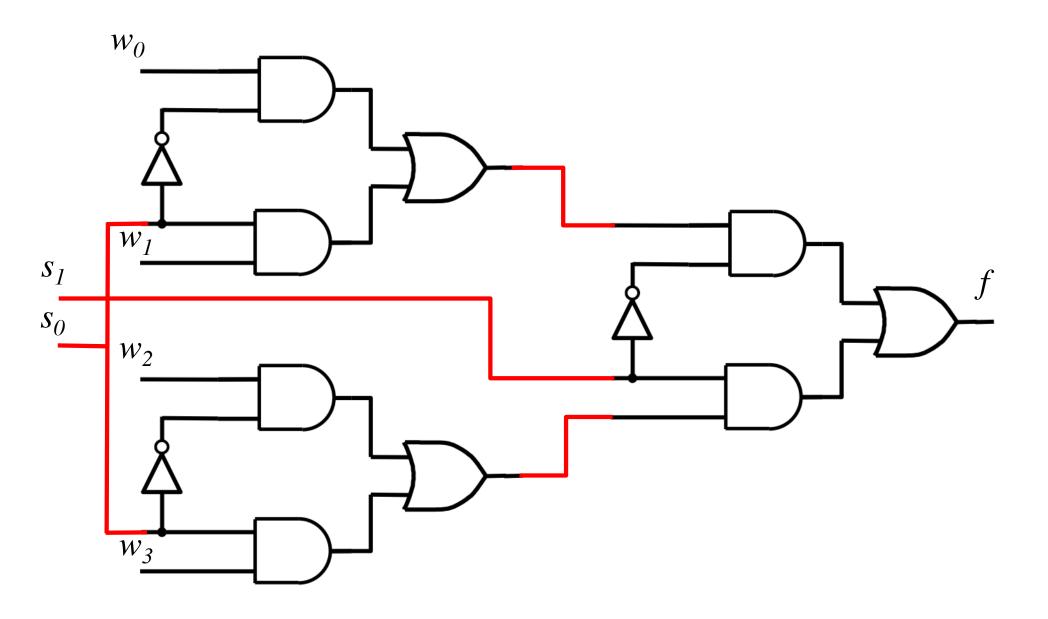
S₁

http://en.wikipedia.org/wiki/Railroad_switch]

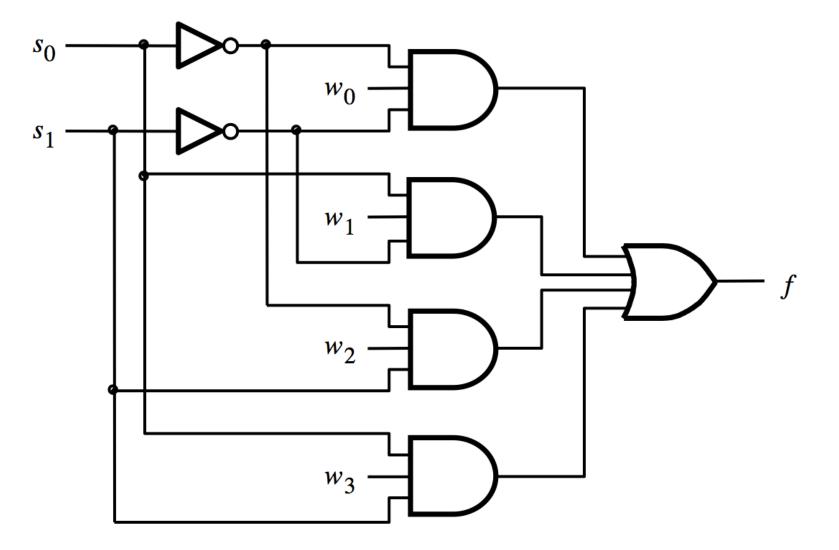




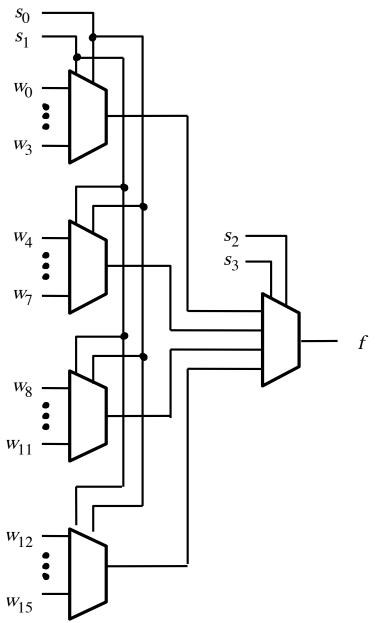




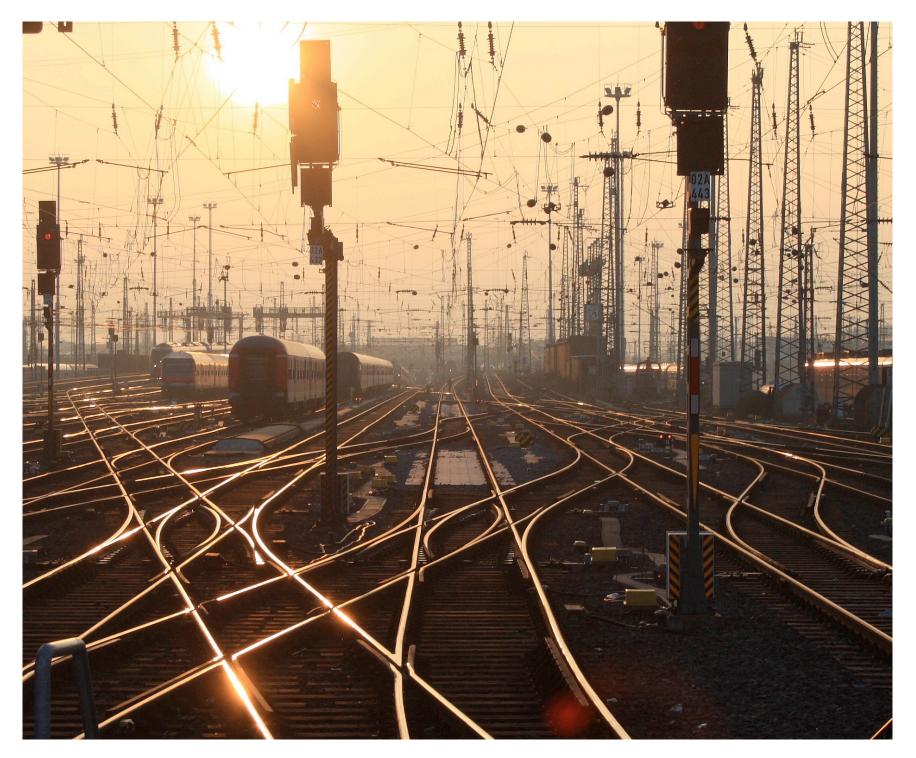
That is different from the SOP form of the 4-1 multiplexer shown below, which uses fewer gates



16-1 Multiplexer



[Figure 4.4 from the textbook]



[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END