

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

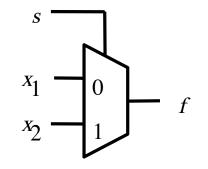
Minimization

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 18 @ 4 pm
- It is posted on the class web page
- I also sent you an e-mail with the link.

Example: K-Map for the 2-1 Multiplexer


2-1 Multiplexer (Definition)

- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x_1
- If s=1, then the output is equal to x_2

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

[Figure 2.33b-c from the textbook]

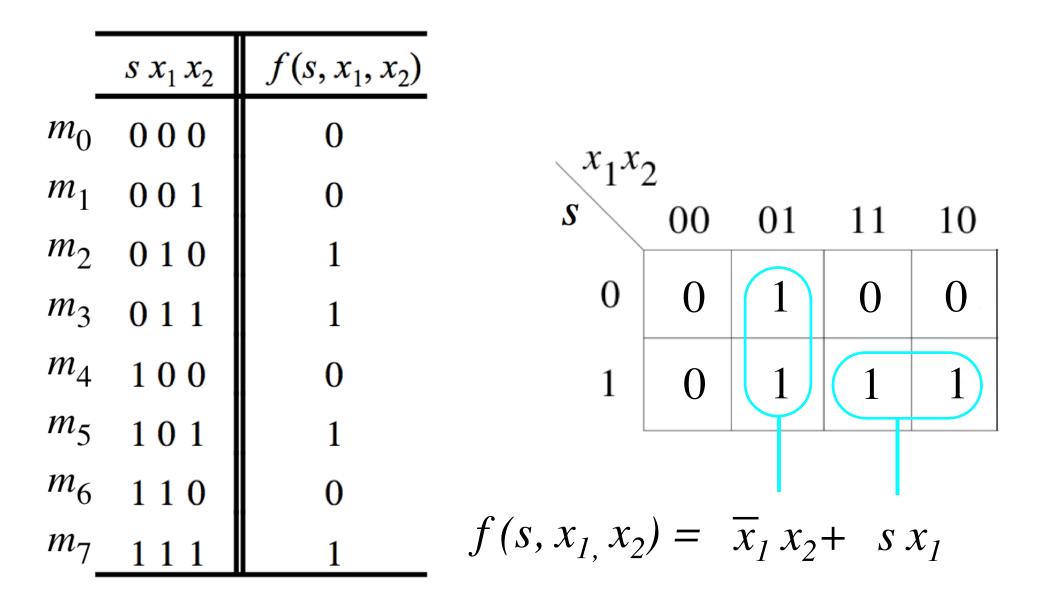
Truth Table for a 2-1 Multiplexer

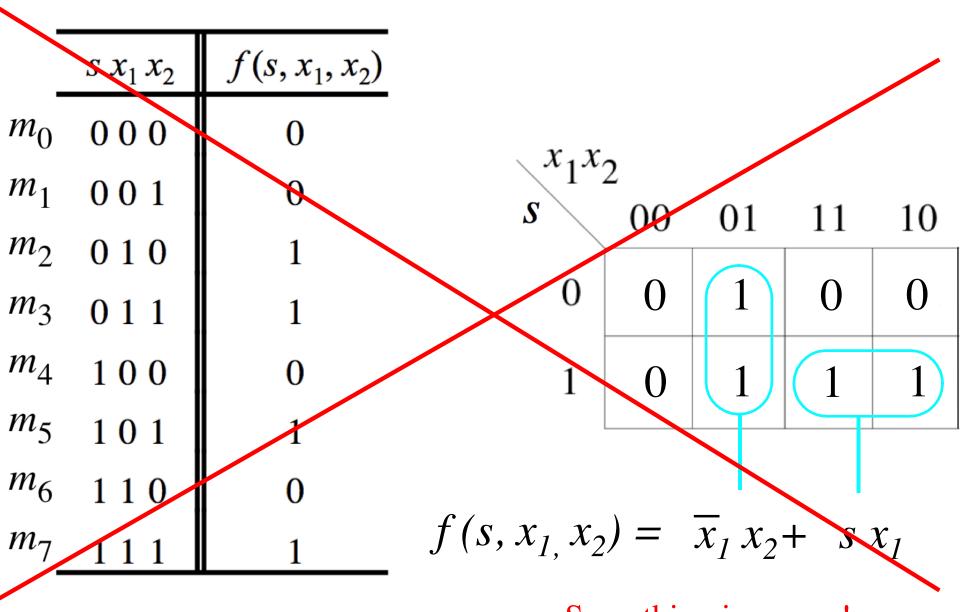
$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
<i>m</i> ₃	011	1
m_4	100	0
m_5	101	1
	110	0
m_7	111	1


	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
<i>m</i> ₃	011	1
m_4	100	0
m_5	101	1
<i>m</i> ₆	110	0
m_{7}	111	1


x_1^x	2			
s	00	01	11	10
0	m_0	m_2	<i>m</i> ₆	m_4
1	m_1	<i>m</i> ₃	<i>m</i> ₇	<i>m</i> ₅

-	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	011	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2	2			
s	00	01	11	10
0	0	1	0	0
1	0	1	1	1

•	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	. r.r.	_			
m_1	001	0	$x_1 x_2$	2 00	01	11	10
m_2	010	1		00			
m_3	011	1	0	0	1	0	0
m_4	100	0	1	0	1	$\boxed{1}$	1)
m_5	101	1					
m_6	110	0					
m_7	111	1					

Something is wrong!

Compare this with the SOP derivation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

 $\overline{s} x_1 \overline{x}_2$

 $\overline{s} x_1 x_2$

 $s \overline{x_1} x_2$

 $S X_1 X_2$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

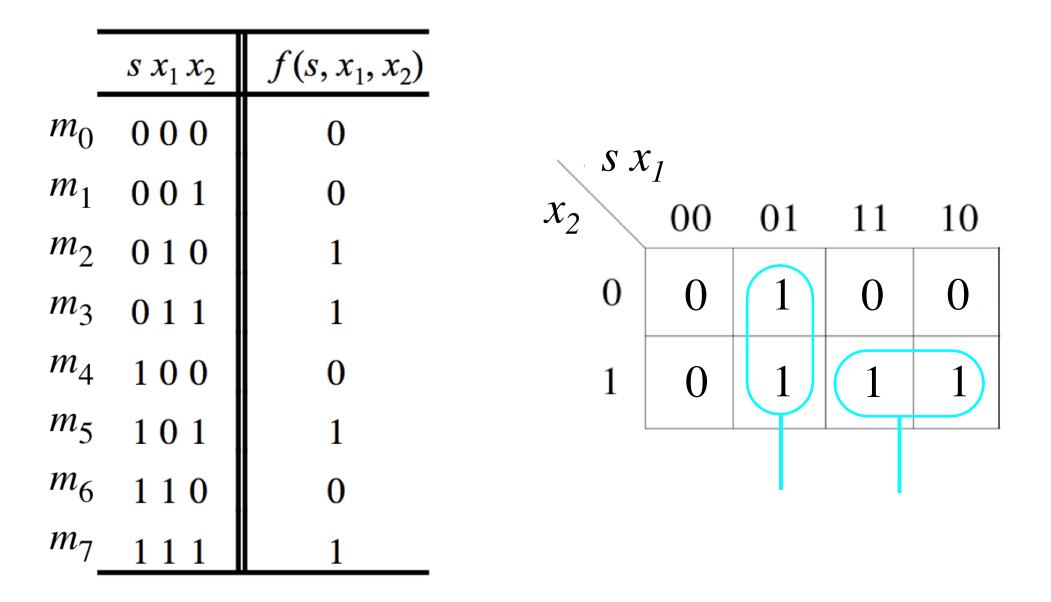
$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$$

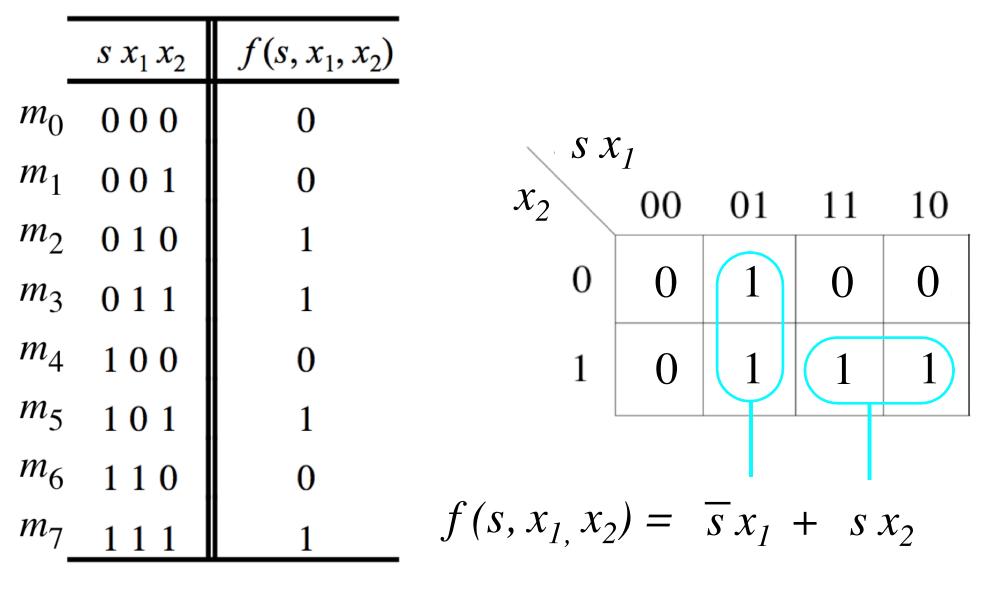
$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
<i>m</i> ₃	011	1
m_4	100	0
m_5	101	1
<i>m</i> ₆	110	0
m_7	111	1

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
<i>m</i> ₃	011	1
m_4	100	0
m_5	101	1
<i>m</i> ₆	110	0
m_7	111	1


$\sqrt{x_1x_2}$								
s	00	01	11	10				
0	m_0	m_2	<i>m</i> ₆	m_4				
1	m_1	<i>m</i> ₃	<i>m</i> ₇	m_5				

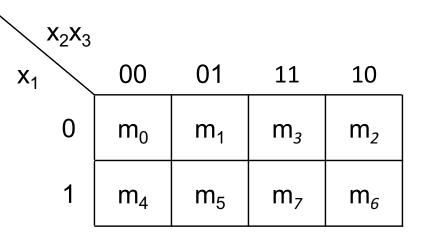

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	$x_1 x_2$				
m_1	001	0	s^{1}	2 00	01	11	10
m_2	010	1			01		10
m_3	011	1	0	<i>m</i> ₀	<i>m</i> ₂	<i>m</i> ₆	m_4
m_4	100	0	1	m_1	<i>m</i> ₃	m ₇	m_5
m_5	101	1					
m_6	110	0					
m_7	111	1					

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	C Y	•			
<i>m</i> ₁	001	0	x_2 x_2	$\frac{1}{00}$	01	11	10
m_2	010	1					
m_3	011	1	0	m_0	m_2	<i>m</i> ₆	m_4
m_4	100	0	1	m_1	<i>m</i> ₃	m ₇	m_5
m_5	101	1					
<i>m</i> ₆	110	0					
m_7	111	1	The ord	ler of t	he labe	eling n	natters.

-	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	S Y	_			
m_1	001	0	x_2 x_2	1 00	01	11	10
m_2	010	1	2	00	01		
m_3	011	1	0	<i>m</i> ₀	<i>m</i> ₂	<i>m</i> ₆	m_4
m_4	100	0	1	m_1	<i>m</i> ₃	m ₇	m_5
m_5	101	1					
m_6	110	0					
m_7	111	1					

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	ςγ				
m_1	001	0	x_2 s x	00	01	11	10
m_2	010	1	2	00	01	11	10
m_3	011	1	0	0	1	0	0
m_4	100	0	1	0	1	1	1
m_5	101	1					
m_6	110	0					
m_7	111	1					

This is correct!


Two Different Ways to Draw the K-map

<i>x</i> ₁	x_2	<i>x</i> ₃	
0	0	0	<i>m</i> ₀
0	0	1	m_1
0	1	0	<i>m</i> ₂
0	1	1	<i>m</i> ₃
1	0	0	m_4
1	0	1	m_5
1	1	0	<i>m</i> ₆
1	1	1	<i>m</i> ₇
			I

(a) Truth table

$x_1^{x_1}$	2			
<i>x</i> ₃	00	01	11	10
0	<i>m</i> ₀	m_2	<i>m</i> ₆	m_4
1	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₇	<i>m</i> ₅

(b) Karnaugh map

Another Way to Draw 3-variable K-map

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃		$X_1 X_2$	•			
0	0	0	<i>m</i> ₀	x_3 x_1 x_2	2 00	01	11	10
0	0	1	m_1	\mathbf{O}	m	101	m	m
0	1	0	m_2	0	<i>m</i> ₀	<i>m</i> ₂	<i>m</i> ₆	<i>m</i> ₄
0	1	1	<i>m</i> ₃	1	m_1	m_3	m_7	m_5
1	0	0	m_4					
1	0	1	m_5	(b) Karn	augh	map	
1	1	0	<i>m</i> ₆		x ₁			
1	1	1	m_7	X ₂ 2	x ₃	0	1	
					00	m ₀	m ₄	

01

11

10

 m_1

 m_3

 m_2

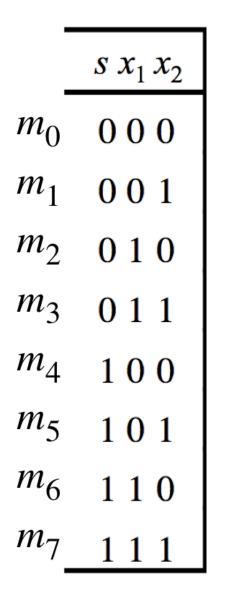
 m_5

 m_7

 m_6

(a) Truth table

Gray Code


- Sequence of binary codes
- Neighboring lines vary by only 1 bit

	000
	001
00	011
01	010
11	110
10	111
	101
	100

Gray Code & K-map

_					
	$s x_1 x_2$				
m_0^{-}	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
m_7	111				

S X	\hat{c}_1			
x_2	00	01	11	10
0	m_0	m_2	<i>m</i> ₆	m_4
1	m_1	<i>m</i> ₃	<i>m</i> ₇	<i>m</i> ₅

$s x_1$						
x_2	00	01	11	10		
0	000	010	110	100		
1	001	011	111	101		

_					
	$s x_1 x_2$				
m_0^{-}	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
m_7	111				

$s x_1$						
x_2	00	01	11	10		
0	000	010	110	100		
1	001	011	111	101		

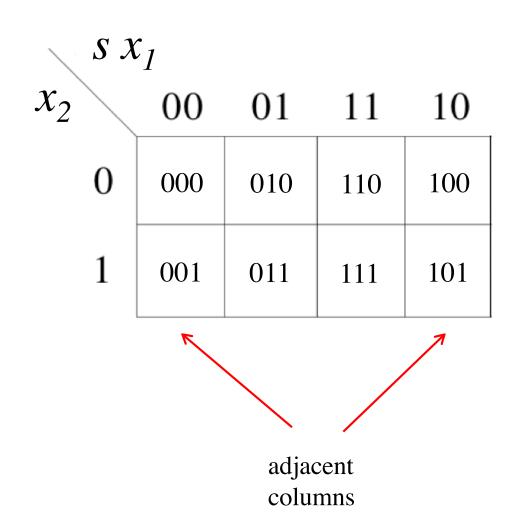
These two neighbors differ only in the LAST bit

_					
	$s x_1 x_2$				
m_0^{-1}	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
<i>m</i> ₇	111				

$s x_1$						
x_2	00	01	11	10		
0	000	010	110	100		
1	001	011	111	101		

These two neighbors differ only in the LAST bit

_					
	$s x_1 x_2$				
m_0^{-}	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
m_7	111				


$s x_1$						
x_2	00	01	11	10		
0	000	010	110	100		
1	001	011	111	101		

These two neighbors differ only in the FIRST bit

-					
	$s x_1 x_2$				
m_0	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
<i>m</i> ₇	111				

\mathbf{x}_{1}						
x_2	00	01	11	10		
0	000	010	110	100		
1	001	011	111	101		

These two neighbors differ only in the FIRST bit

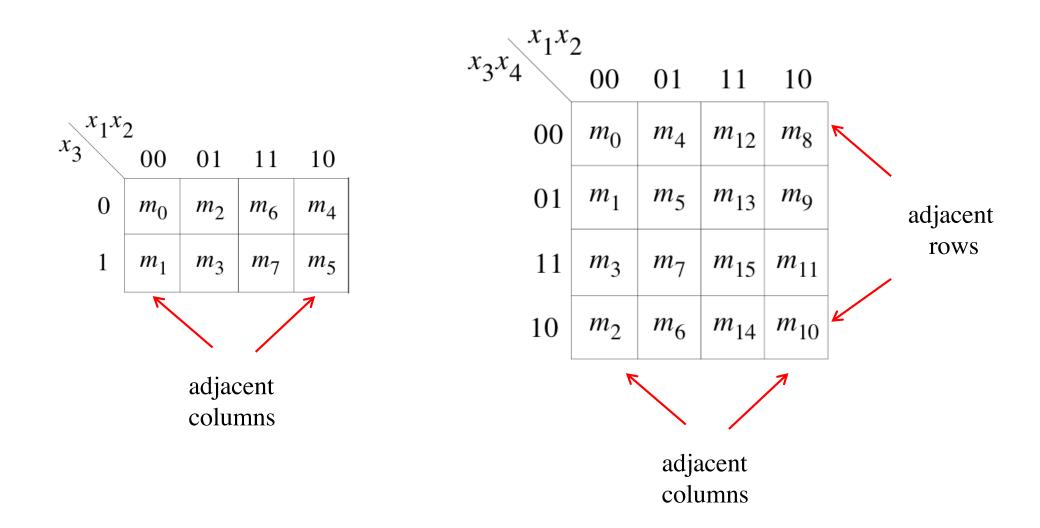
-					
	$s x_1 x_2$				
m_0	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
<i>m</i> ₇	111				

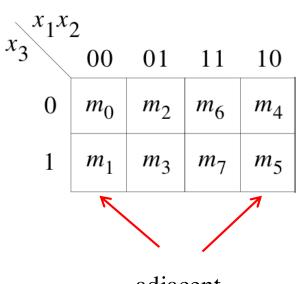
\mathbf{x}						
<i>x</i> ₂	00	01	11	10		
0	000	010	110	100		
1	001	011	111	101		

These four neighbors differ in the FIRST and LAST bit

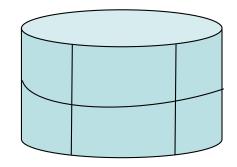
They are similar in their MIDDLE bit

A four-variable Karnaugh map

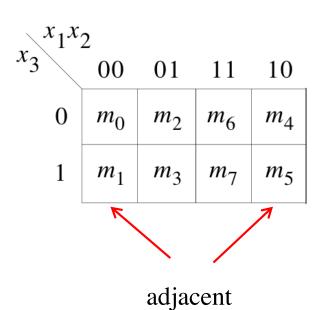


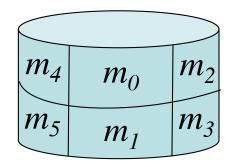

[Figure 2.53 from the textbook]

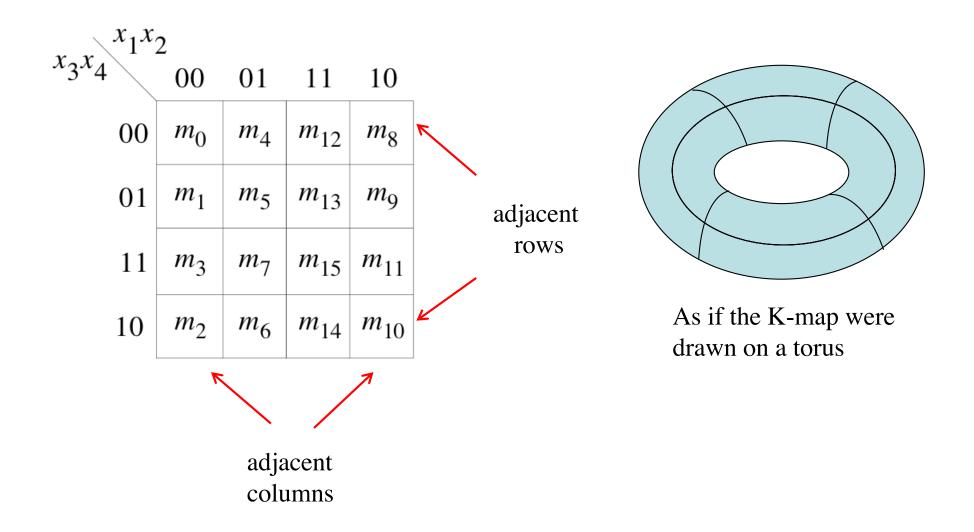
A four-variable Karnaugh map

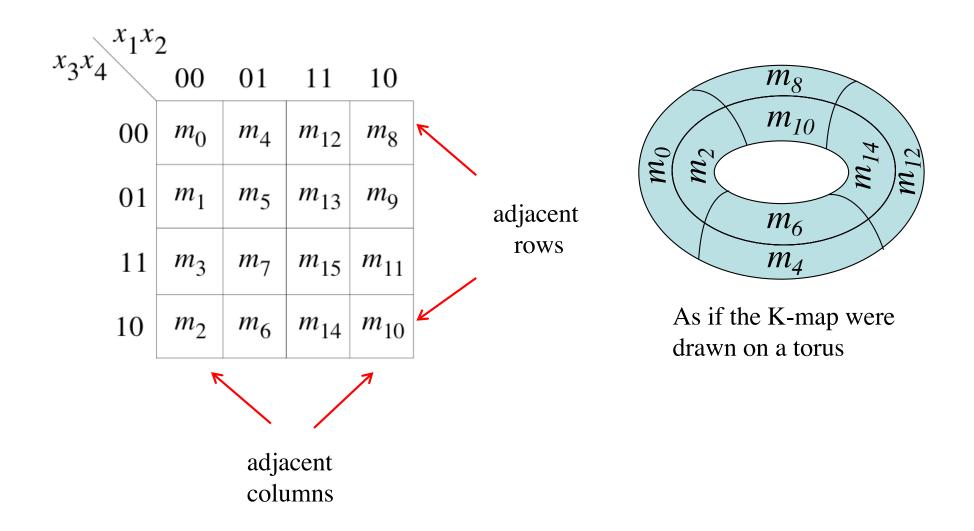

x1	x2	x3	x4	
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

	vv			x_1					
$x_3 x_2$		² 00	01	11	10				
	00	<i>m</i> ₀	m_4	<i>m</i> ₁₂	<i>m</i> ₈				
	01	<i>m</i> ₁	<i>m</i> ₅	<i>m</i> ₁₃	<i>m</i> ₉				
ſ	11	<i>m</i> ₃	<i>m</i> ₇	<i>m</i> ₁₅	<i>m</i> ₁₁	x ₄			
<i>x</i> ₃ <	10	<i>m</i> ₂	<i>m</i> ₆	<i>m</i> ₁₄	<i>m</i> ₁₀				
	L								



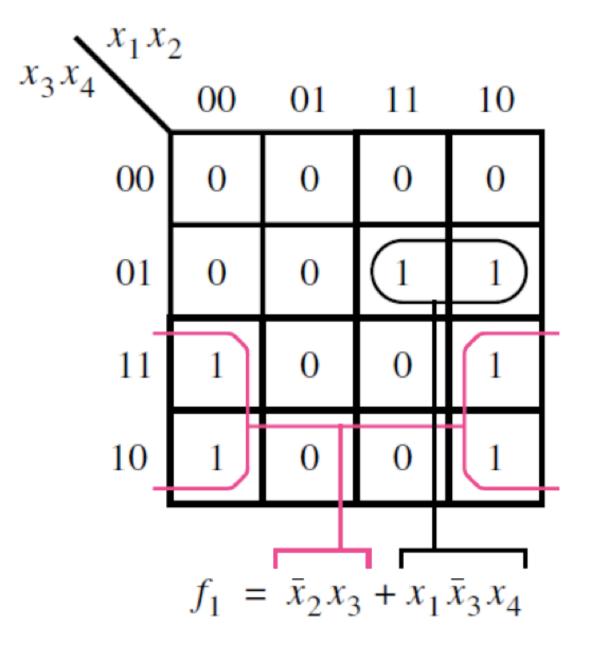

adjacent columns


As if the K-map were drawn on a cylinder

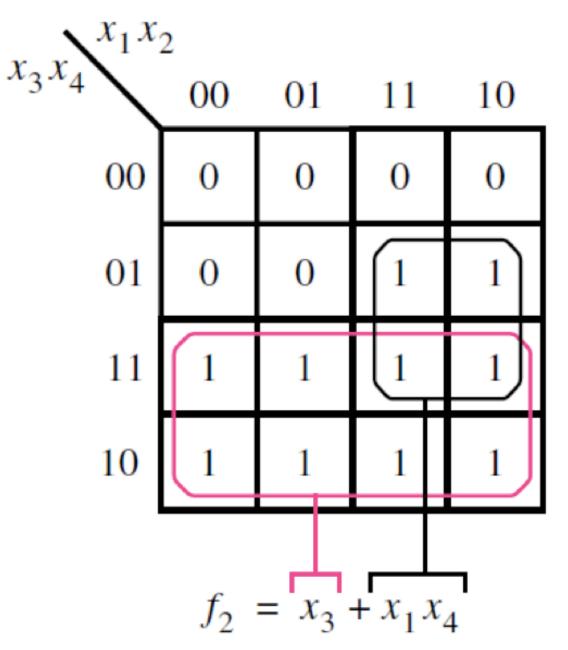


columns

As if the K-map were drawn on a cylinder



X	1	x2	x3	x4						X	1	
C)	0	0	0	m0		vv				1	
С)	0	0	1	m1	,	$\lambda 1^{\lambda}$	2				
С)	0	1	0	m2	x_3^{x}	$x_1 x_2$	00	01	11	10	
С)	0	1	1	m3			00				
C)	1	0	0	m4		00	m	ทา	111	ท	
С)	1	0	1	m5		00	m_0	m_4	<i>m</i> ₁₂	m_8	
С)	1	1	0	m6		-					า
С)	1	1	1	m7		01	m_1	m_5	<i>m</i> ₁₃	$m_{\rm Q}$	
1		0	0	0	m8			T	5	15		r.
1		0	0	1	m9							> x ₄
1		0	1	0	m10		11	m_3	m_7	m_{15}	m_{11}	
1		0	1	1	m11	<i>x</i> ₃ <	-					J
1		1	0	0	m12	5	10	m_2	m_6	m_{14}	m_{10}	
1		1	0	1	m13		10	112	<i>m</i> 6	<i>14</i>	10	
1		1	1	0	m14		L		I			
1		1	1	1	m15						,	
					-				X	2		


	x1	x2	x3	x4						X	1	
-	0	0	0	0	m0		vv				1	
	0	0	0	1	m1	``````````````````````````````````````	$\lambda 1^{\lambda}$	2				
	0	0	1	0	m2	x_3^x	$x_1 x_2$	00	01	11	10	
	0	0	1	1	m3			00			10	
-	0	1	0	0	m4		00	0000	0100	1100	1000	
	0	1	0	1	m5		00	0000	0100	1100	1000	
	0	1	1	0	m6		-					1
	0	1	1	1	m7		01	0001	0101	1101	1001	
-	1	0	0	0	m8							L
	1	0	0	1	m9							ſ
	1	0	1	0	m10		11	0011	0111	1111	1011	
	1	0	1	1	m11	x ₃ -	-					J
-	1	1	0	0	m12		10	0010	010 0110	1110	1010	
	1	1	0	1	m13		10	0010		1110	1010	
	1	1	1	0	m14		l					
	1	1	1	1	m15						r	
					-	x_2						

Example of a four-variable Karnaugh map

[Figure 2.54 from the textbook]

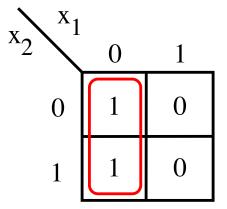
Example of a four-variable Karnaugh map

[Figure 2.54 from the textbook]

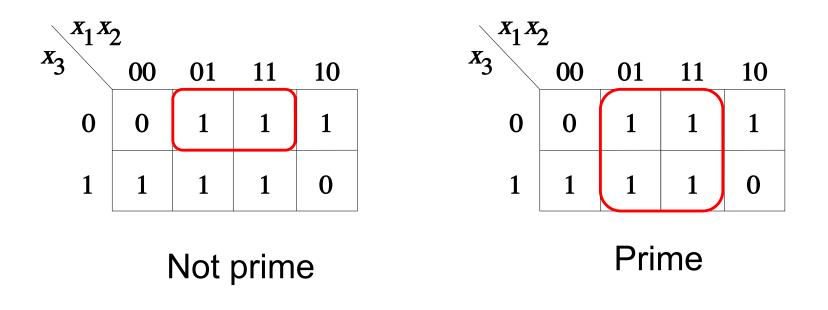
Strategy For Minimization

Grouping Rules

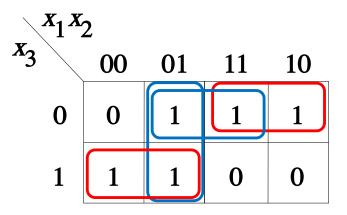
- Group "1"s with rectangles
- Both sides a power of 2:
 - 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4
- Can use the same minterm more than once
- Can wrap around the edges of the map
- Some rules in selecting groups:
 - Try to use as few groups as possible to cover all "1"s.
 - For each group, try to make it as large as you can (i.e., if you can use a 2x2, don't use a 2x1 even if that is enough).

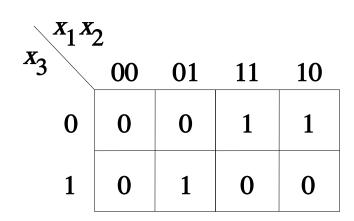

Literal: a variable, complemented or uncomplemented

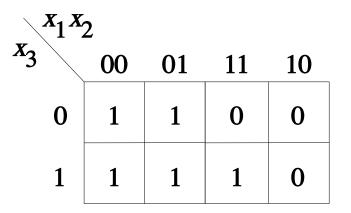
Some Examples:


- X₁
- X₂

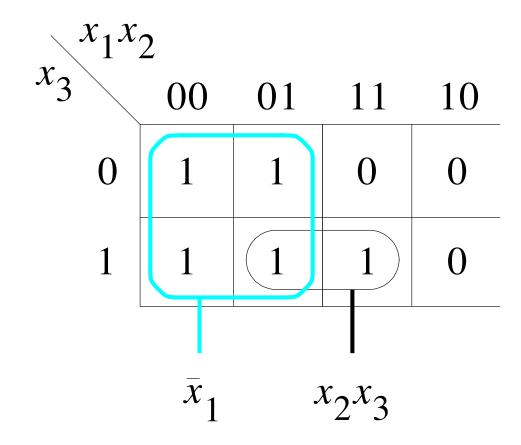
- Implicant: product term that indicates the input combinations for which the function output is 1
- Example

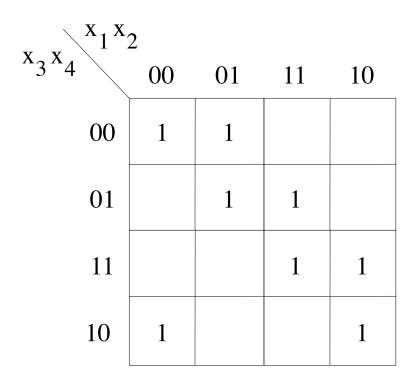

• \mathbf{x}_1^- - indicates that $\mathbf{x}_1\mathbf{x}_2$ and $\mathbf{x}_1\mathbf{x}_2$ yield output of 1

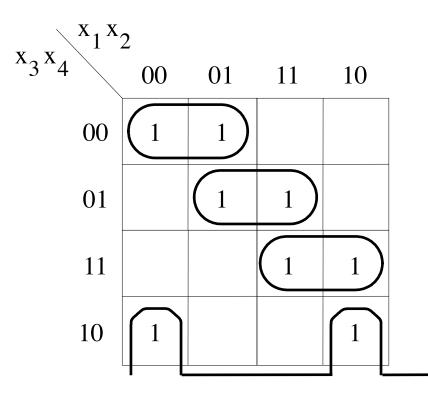

- Prime Implicant
 - Implicant that cannot be combined into another implicant with fewer literals
 - Some Examples

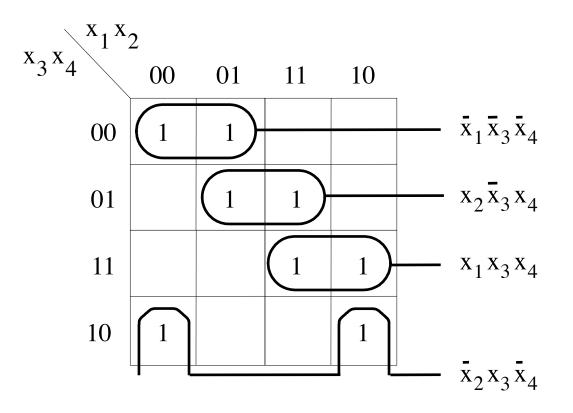

- Essential Prime Implicant
 - Prime implicant that includes a minterm not covered by any other prime implicant
 - Some Examples

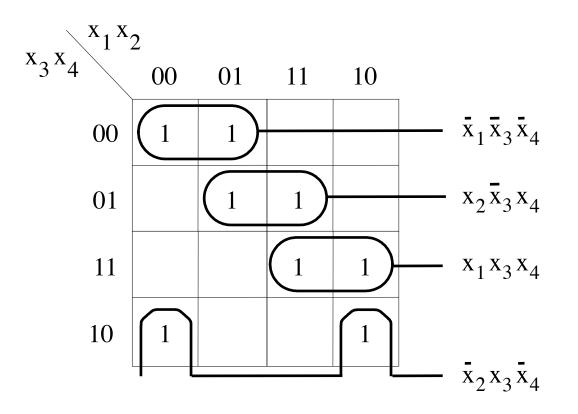
- Cover
 - Collection of implicants that account for all possible input valuations where output is 1
 - Ex. $x_1' x_2 x_3 + x_1 x_2 x_3' + x_1 x_2' x_3'$
 - Ex. $x_1' x_2 x_3 + x_1 x_3'$


- Give the Number of
 - Implicants?
 - Prime Implicants?
 - Essential Prime Implicants?

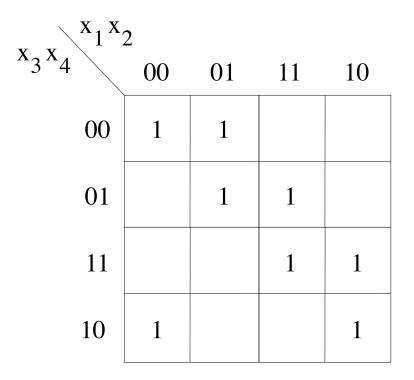

Why concerned with minimization?

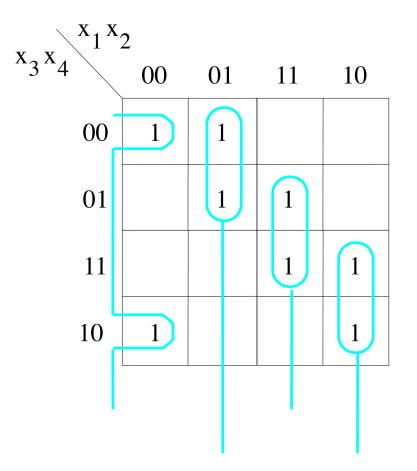

- Simplified function
- Reduce the cost of the circuit
 - Cost: Gates + Inputs
 - Transistors

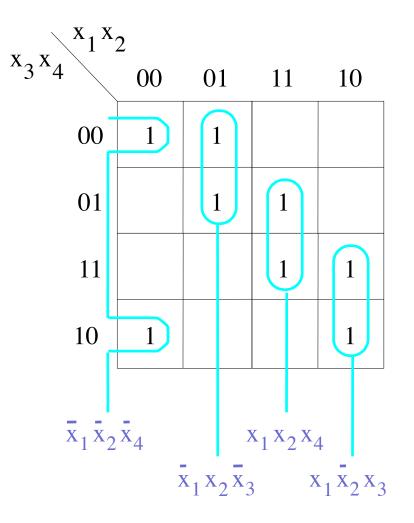

Three-variable function f $(x_1, x_2, x_3) = \sum m(0, 1, 2, 3, 7)$

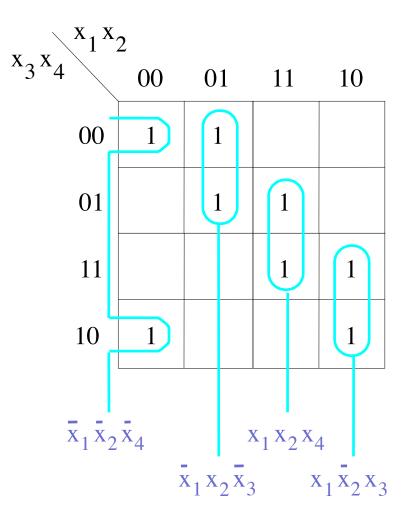


[Figure 2.56 from the textbook]

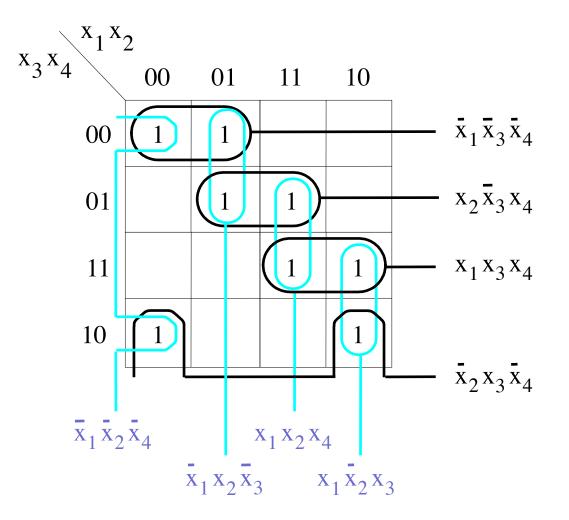


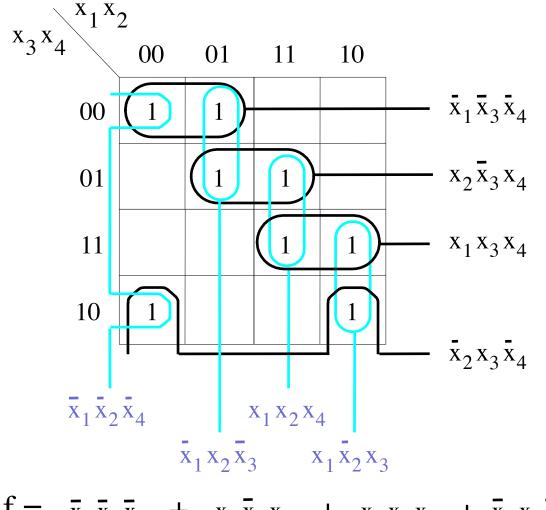






 $f = \bar{x}_1 \bar{x}_3 \bar{x}_4 + x_2 \bar{x}_3 x_4 + x_1 x_3 x_4 + \bar{x}_2 x_3 \bar{x}_4$




 $\mathbf{f} = \bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2 \bar{\mathbf{x}}_4 + \bar{\mathbf{x}}_1 \mathbf{x}_2 \bar{\mathbf{x}}_3 + \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4 + \mathbf{x}_1 \bar{\mathbf{x}}_2 \mathbf{x}_3$

Example: Both Are Valid Solutions

[Figure 2.59 from the textbook]

Example: Both Are Valid Solutions

 $f = \bar{x}_1 \bar{x}_3 \bar{x}_4 + x_2 \bar{x}_3 x_4 + x_1 x_3 x_4 + \bar{x}_2 x_3 \bar{x}_4$ $f = \bar{x}_1 \bar{x}_2 \bar{x}_4 + \bar{x}_1 x_2 \bar{x}_3 + x_1 x_2 x_4 + x_1 \bar{x}_2 x_3$

Minimization of Product-of-Sums Forms

Do You Still Remember This Boolean Algebra Theorem?

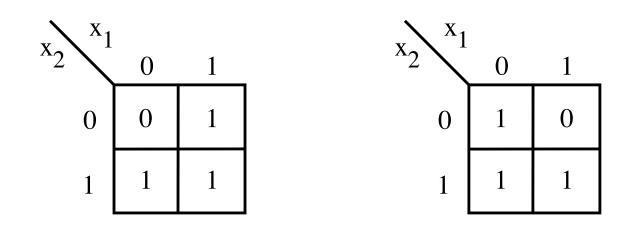
14a.
$$x \cdot y + x \cdot \overline{y} = x$$

14b.
$$(x + y) \cdot (x + \overline{y}) = x$$

Combining

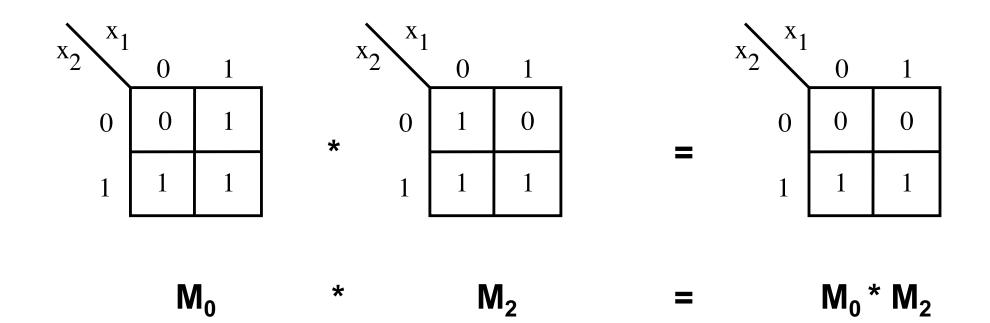
x	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	
0	1	
1	0	
1	1	

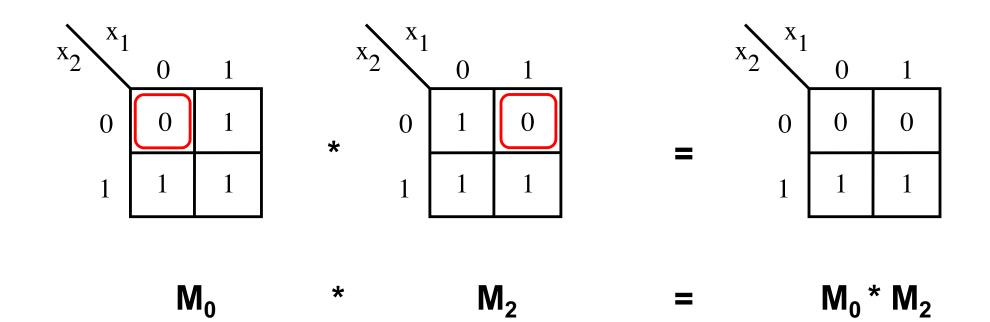
x	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	0
0	1	1
1	0	1
1	1	1

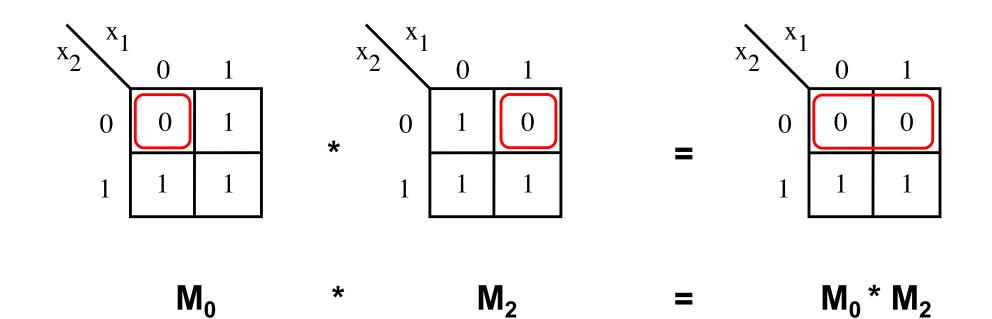

x	у	(x +	y)•(x + y)	= x
0	0	0	1	
0	1	1	0	
1	0	1	1	
1	1	1	1	

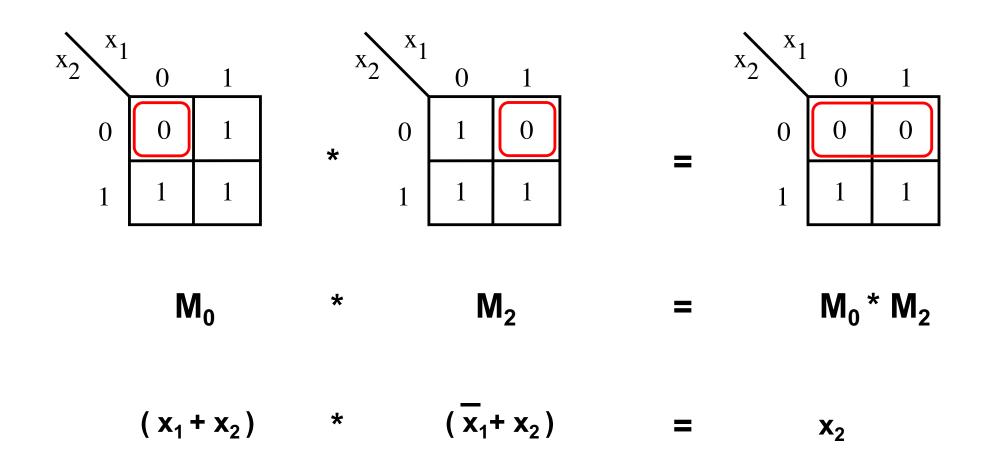
x	у	(x +	y)•(x	+ <u>y</u>)	= x
0	0	0	0	1	
0	1	1	0	0	
1	0	1	1	1	
1	1	1	1	1	

x	у	(x +	y)•(x	+ <u>y</u>)	= x
0	0	0	0	1	0
0	1	1	0	0	0
1	0	1	1	1	1
1	1	1	1	1	1

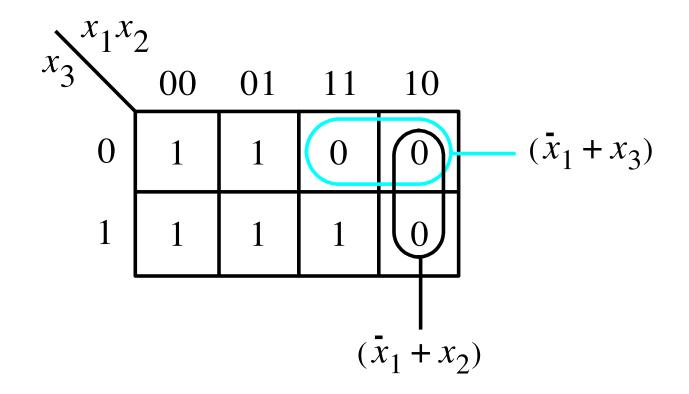

x	у	(x ·	+	y)•(x	+ <u>y</u>)	=	x
0	0		0	0	1		0
0	1		1	0	0		0
1	0		1	1	1		1
1	1		1	1	1		1

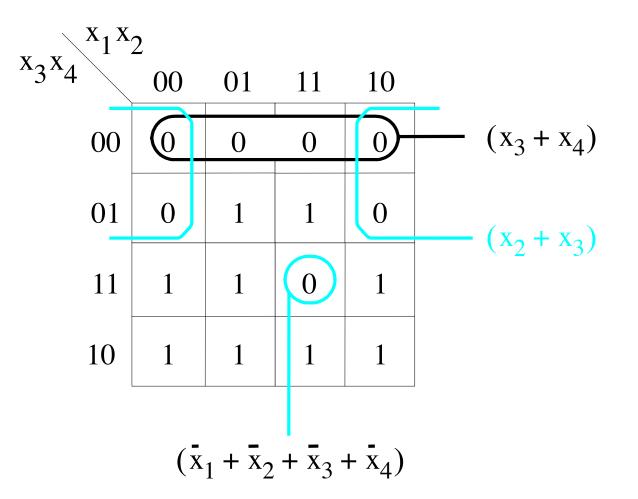

They are equal.




 M_0

 M_2




Property 14b (Combining)

POS minimization of $f(x_1, x_2, x_3) = \prod M(4, 5, 6)$

[Figure 2.60 from the textbook]

POS minimization of f ($x_1, ..., x_4$) = $\prod M(0, 1, 4, 8, 9, 12, 15)$

[Figure 2.61 from the textbook]

Questions?

THE END