

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

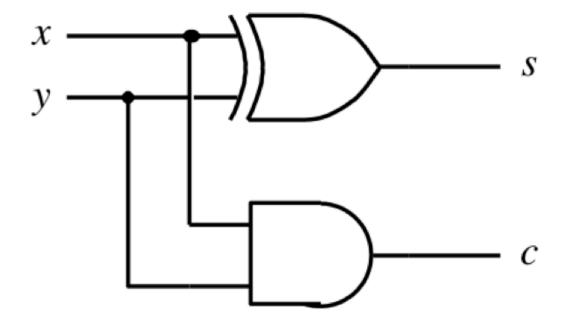
CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

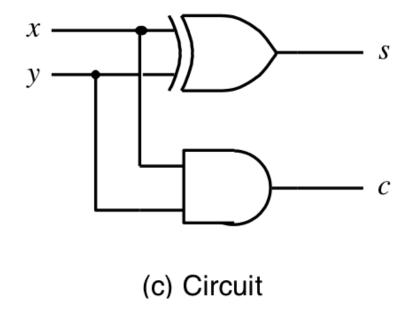
- HW5 is out
- It is due on Monday Oct 2 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, please staple all of your pages together.

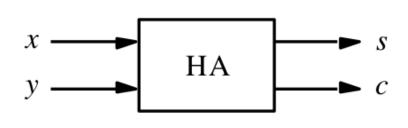
Administrative Stuff

- Labs Next Week
- Mini-Project
- This one is worth 3% of your grade.
- Make sure to get all the points.
- http://www.ece.iastate.edu/~alexs/classes/ 2017_Fall_281/labs/Project-Mini/


Quick Review

Adding two bits (there are four possible cases)


Adding two bits (the truth table)


r v	Carry c	Sum s
<i>x y</i>		_
$\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}$	0 0	0 1
1 0	0	1
1 1	1	0

Adding two bits (the logic circuit)

The Half-Adder

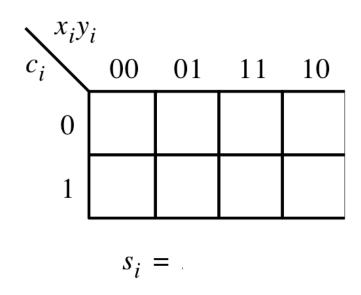
(d) Graphical symbol

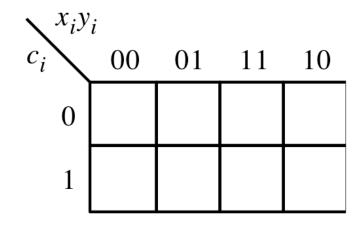
Addition of multibit numbers

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ...

Bit position *i*

carry		0	1	1	0	
	_L		3	8	9	
	T		1	5	7	
			5	4	6	

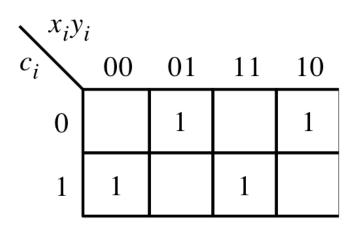

Problem Statement and Truth Table

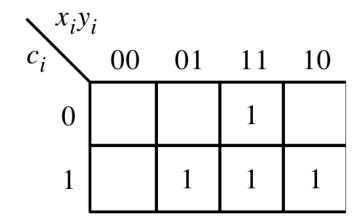

 c_{i+1}	c_i	
 	x_i	
 	y_i	
 	s_i	

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Let's fill-in the two K-maps

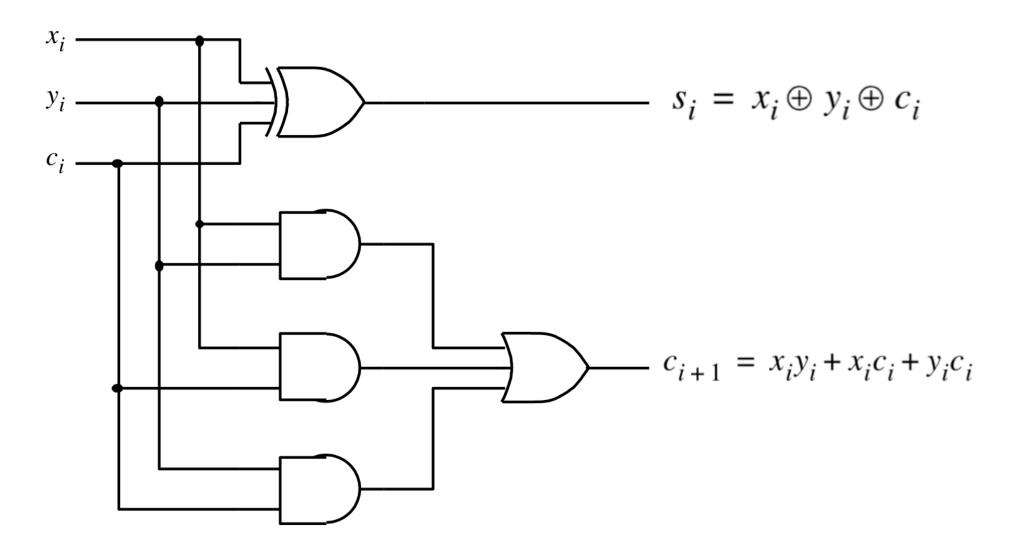
c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



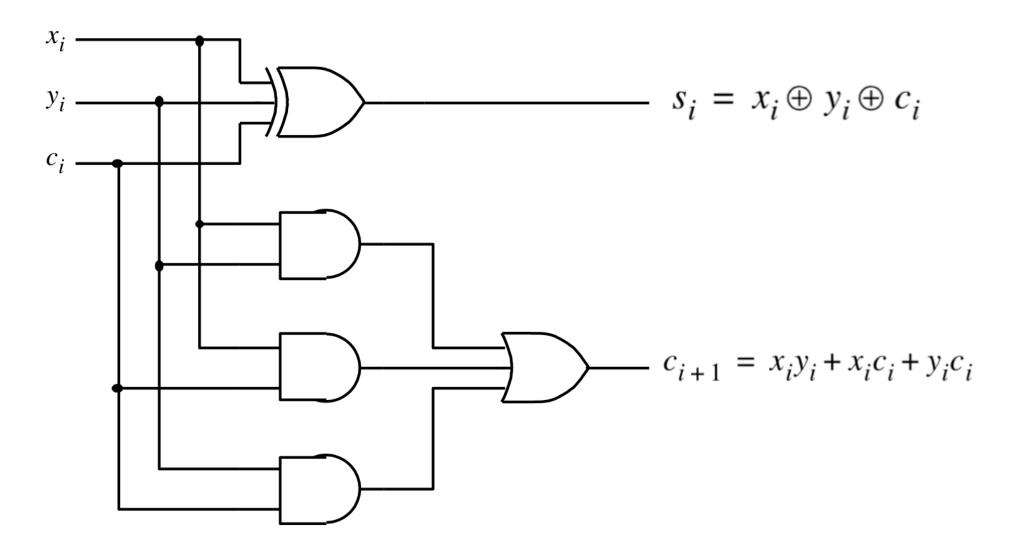

$$c_{i+1} =$$

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

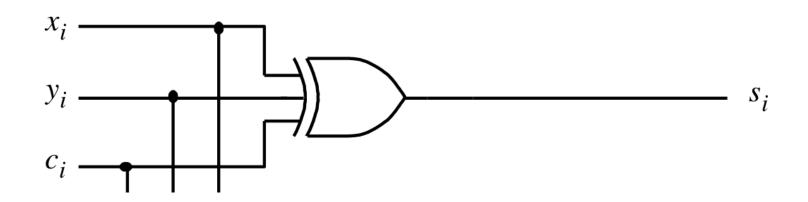


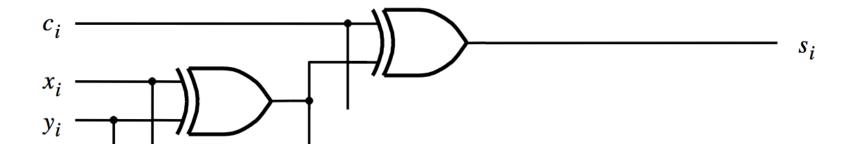
$$s_i = x_i \oplus y_i \oplus c_i$$

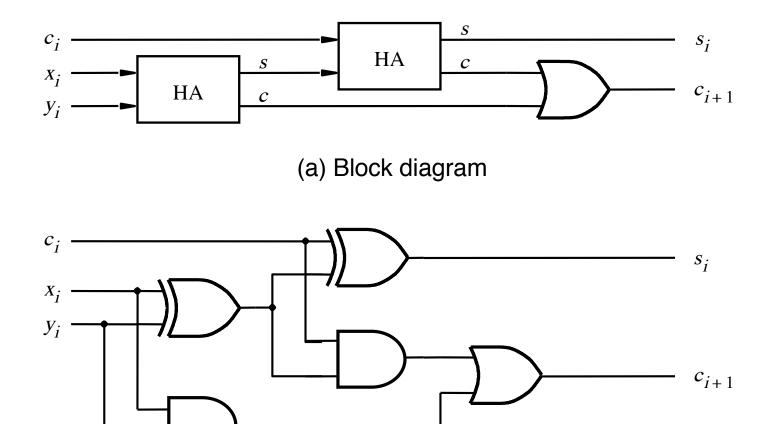


$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

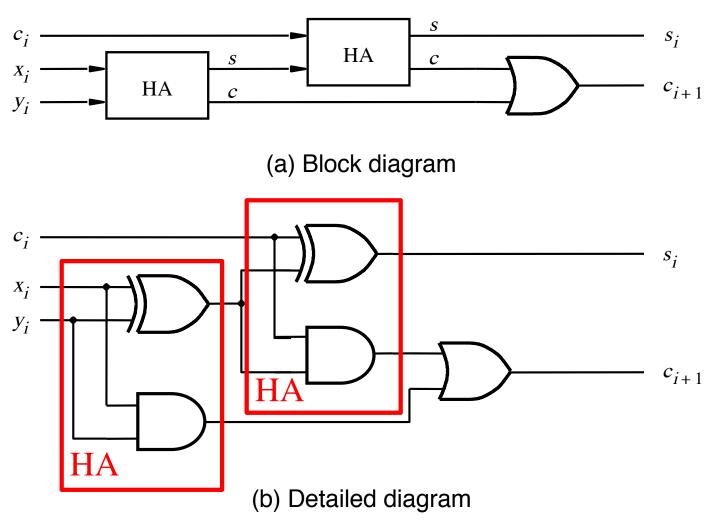
The circuit for the two expressions



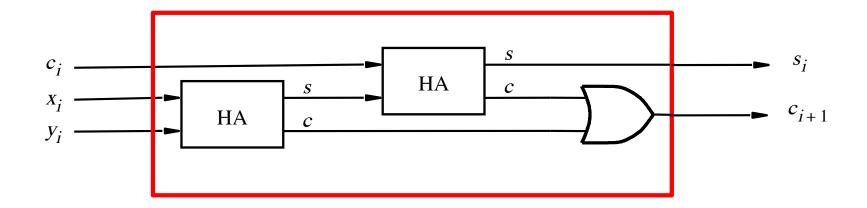

This is called the Full-Adder


XOR Magic (s_i can be implemented in two different ways)

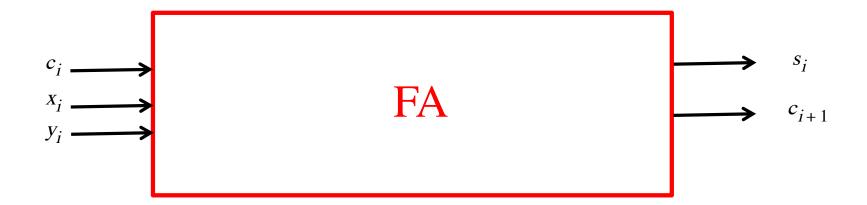
$$s_i = x_i \oplus y_i \oplus c_i$$

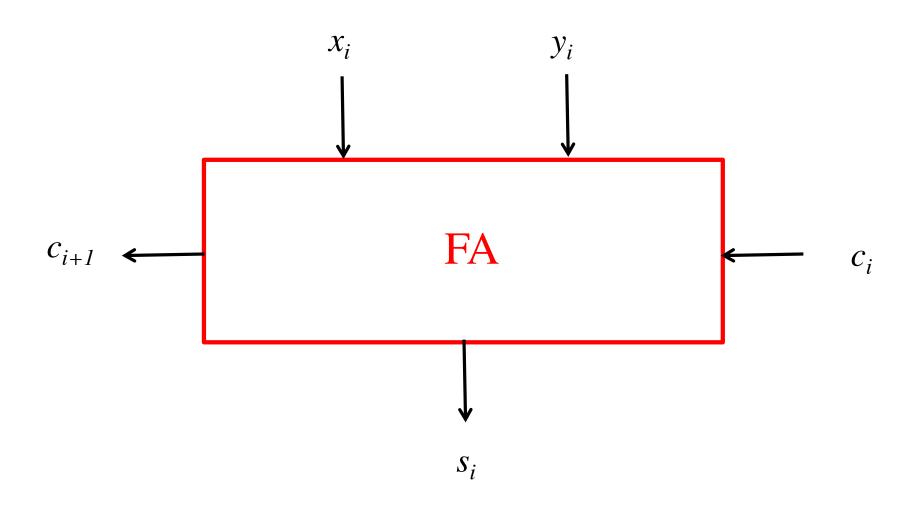


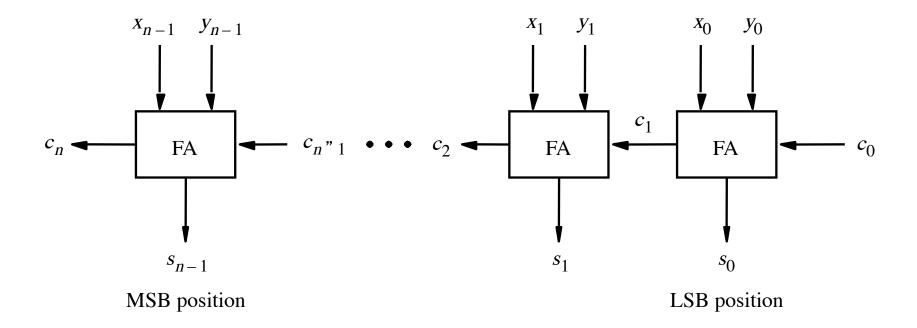
A decomposed implementation of the full-adder circuit

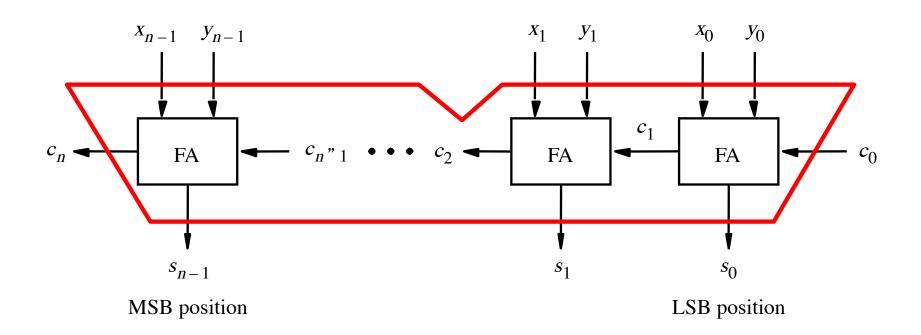


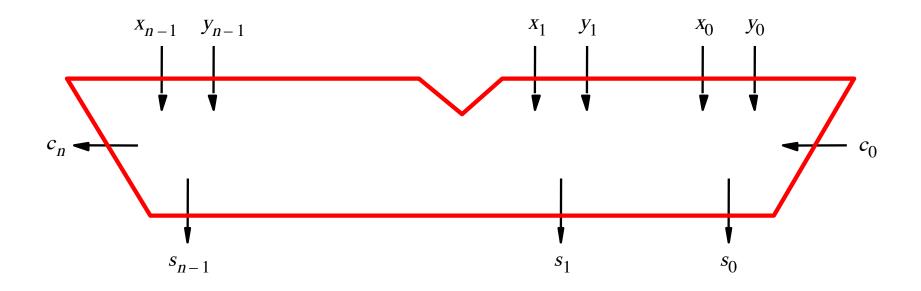
(b) Detailed diagram

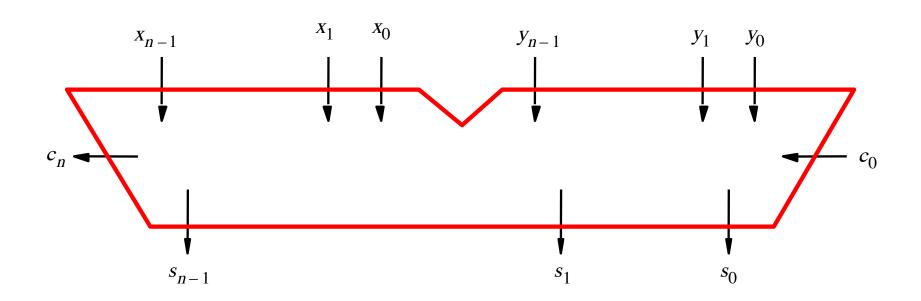

A decomposed implementation of the full-adder circuit


The Full-Adder Abstraction


The Full-Adder Abstraction


We can place the arrows anywhere


n-bit ripple-carry adder


n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

_ 82	_ 48	_ 32
61	2 6	11
??	??	7?

_ 82	_ 48	_ 32
61	2 6	11
21	22	21

_ 82	_ 48	_ 32
64		_ 13
??	??	77

Math Review: Subtraction

_ 82	_ 48	_ 32
64	29	_ 13
18	19	19

The problems in which row are easier to calculate?

The problems in which row are easier to calculate?

82	
61	
21	

Why?

$$82 - 64 = 82 + 100 - 100 - 64$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

$$= 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

Does not require borrows

$$= 82 + (99 - 64) + 1 - 100$$

9's Complement (subtract each digit from 9)

10's Complement (subtract each digit from 9 and add 1 to the result)

$$\begin{array}{r}
-99 \\
-64 \\
\hline
35 + 1 = 36
\end{array}$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= $82 + 35 + 1 - 100$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$= 82 + (35 + 1) - 100$$

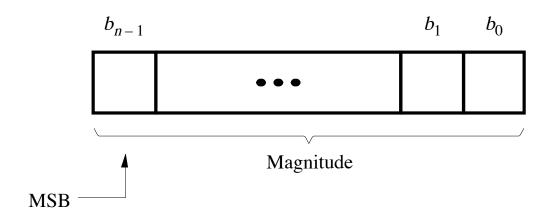
$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

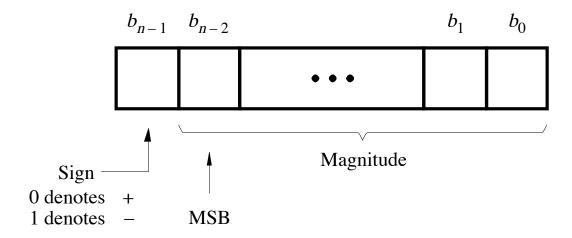
$$= 82 + 36 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$

$$= 82 + 35 + 1 - 100$$


$$= 82 + 36 - 100$$
// Add the first two.
$$= 118 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$


$$= 82 + 35 + 1 - 100$$

$$= 82 + 36 - 100$$
// Add the first two.
$$= 18$$
// No need to subtract 100.
$$= 18$$

Formats for representation of integers

(a) Unsigned number

(b) Signed number

Negative numbers can be represented in following ways

- Sign and magnitude
- •1's complement
- •2's complement

1's complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^n - 1$, namely

$$K = (2^n - 1) - P$$

This means that K can be obtained by inverting all bits of P.

Find the 1's complement of ...

0 1 0 1

0010

0011

0 1 1 1

Find the 1's complement of ...

$$0\ 0\ 1\ 1$$
 $0\ 1\ 1\ 1$ $0\ 0\ 0$

Just flip 1's to 0's and vice versa.

$$\begin{array}{c} (+5) \\ +(+2) \\ \hline (+7) \end{array} \qquad \begin{array}{c} 0\ 1\ 0\ 1 \\ +\ 0\ 0\ 1\ 0 \\ \hline \hline 0\ 1\ 1\ 1 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1010 1011 1100 1101	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4 -3 -2
1110 1111	$ \begin{array}{c} -1 \\ -0 \end{array} $

$$\begin{array}{ccc}
(+5) & & & 0 & 1 & 0 & 1 \\
+ & & & & + & 0 & 0 & 1 & 0 \\
\hline
(+7) & & & & & \hline
0 & 1 & 0 & 1 & 1
\end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{ccc}
(-5) & & 1010 \\
+(+2) & & +0010 \\
\hline
(-3) & & 1100
\end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1010 1011 1100 1101	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4 -3 -2
1110 1111	$ \begin{array}{c} -1 \\ -0 \end{array} $

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{ccc} (+5) & & 0 & 1 & 0 & 1 \\ +(-2) & & +1 & 1 & 0 & 1 \\ \hline (+3) & & 1 & 0 & 0 & 1 & 0 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000	+7 $+6$ $+5$ $+4$ $+3$ $+2$ $+1$ $+0$ -7
1001 1010 1011 1100 1101 1110 1111	

$$\begin{array}{ccc} (+5) & & 0 & 1 & 0 & 1 \\ +(-2) & & +1 & 1 & 0 & 1 \\ \hline (+3) & & 1 & 0 & 0 & 1 & 0 \end{array}$$

$b_3b_2b_1b_0$	1's complement
03020100	T b comprehence
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$(+5)$$
 $+(-2)$
 $+1101$
 $(+3)$
 10010

But this is 2!

1's complement
1's complement +7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4 -3 -2
$ \begin{array}{c} -1 \\ -0 \end{array} $

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

We need to perform one more addition to get the result.

1's complement
1 8 complement
+7
+6
+5
+4
+3
+2
+1
+0
-7
-6
-5
-4
-3
-2
-1
-0

$$+\frac{(-5)}{(-7)}$$
 $+\frac{1010}{10111}$ $+\frac{1101}{10111}$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1010 1011 1100 1101	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4 -3 -2
1110 1111	$ \begin{array}{c} -1 \\ -0 \end{array} $

$$+ \frac{(-5)}{(-7)} + \frac{1010}{10111}$$

$b_3b_2b_1b_0$	1's complement
0210	1
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$+\frac{(-5)}{(-7)}$$
 $+\frac{1010}{10111}$

But this is +7!

$b_3b_2b_1b_0$	1's complement
6444	_
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

D) Example of 1's complement addition

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

D) Example of 1's complement addition

$$\begin{array}{c} +(-5) \\ +(-2) \\ \hline (-7) \end{array} \qquad \begin{array}{c} 1\ 0\ 1\ 0 \\ +\ 1\ 1\ 0\ 1 \\ \hline 1\ 0\ 1\ 1 \\ \hline \hline 1\ 0\ 0\ 0 \\ \end{array}$$

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

2's complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2^n , namely

$$K = 2^n - P$$

Deriving 2's complement

For a positive n-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P$$

$$K_2 = 2^n - P$$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

0101

0010

0100

0 1 1 1

0010

1 1 0 1

0 1 0 1
1 0 1 0

Invert all bits.

$$\begin{array}{c}
0 \ 1 \ 0 \ 1 \\
+ \ 1 \\
\hline
1 \ 0 \ 1 \ 1
\end{array}$$

$$\begin{array}{c}
0 \ 0 \ 1 \ 0 \\
+ \ 1 \ 1 \ 0 \\
\hline
1 \ 1 \ 1 \ 0
\end{array}$$

$$\begin{array}{r}
0 \ 1 \ 0 \ 0 \\
+ \ 1 \\
\hline
1 \ 1 \ 0 \ 0
\end{array}$$

$$\begin{array}{c}
0 \ 1 \ 1 \ 1 \\
+ \ 1 \ 0 \ 0 \ 1 \\
\hline
1 \ 0 \ 0 \ 1
\end{array}$$

Then add 1.

Quick Way to find 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

0101

0010

0100

0 1 1 1

0 1 0 1 0 0 0 1 0

0 1 0 0 0 1 1 1

Copy all bits that are 0 from right to left.

0 1 0 1 0 1 0

. . 1

0 1 0 0 . 1 0 0 1

Stop at the first 1. Copy that 1 as well.

 0 1 0 1
 0 0 1 0

 1 0 1 1
 1 1 1 0

Invert all remaining bits.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

The top half is the same in all three representations. It corresponds to the positive integers.

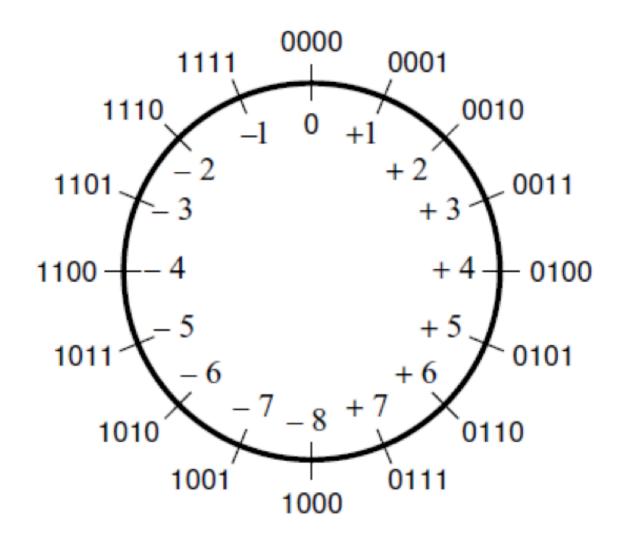
$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1 <mark>1</mark> 01	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In all three representations the first bit represents the sign.

If that bit is 1, then the number is negative.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	$\overline{-1}$	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!


$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	_1_	-2
1111	-7	-0	-1

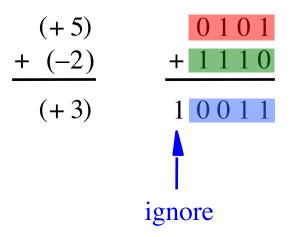
There are two zeros in this representation as well!

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

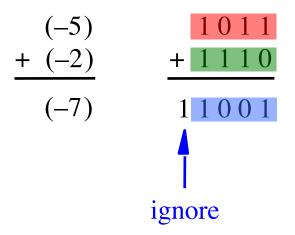
The number circle for 2's complement

A) Example of 2's complement addition


$$(+5)$$
 $+(+2)$
 $(+7)$
 0101
 $+0010$

$b_3b_2b_1b_0$	2's complement
$\begin{array}{c} b_3b_2b_1b_0\\ \hline 0111\\ 0110\\ \hline 0101\\ 0100\\ 0011\\ \hline 0010\\ 0001\\ 0000\\ 1000\\ 1001\\ 1010\\ \end{array}$	2's complement +7 +6 +5 +4 +3 +2 +1 +0 -8 -7 -6
1011 1100 1101 1110 1111	$ \begin{array}{r} -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $

B) Example of 2's complement addition


1111	0'1
$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

C) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

D) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Naming Ambiguity: 2's Complement

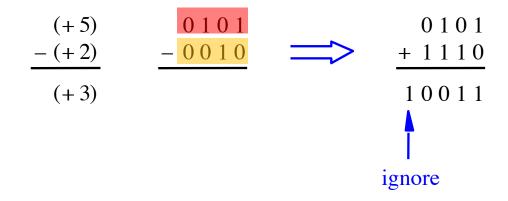
2's complement has two different meanings:

representation for signed integer numbers

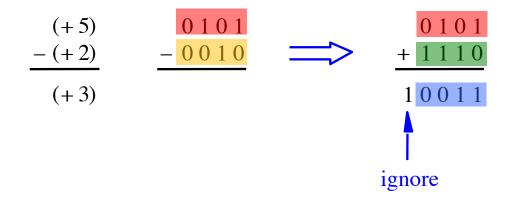
 algorithm for computing the 2's complement (regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

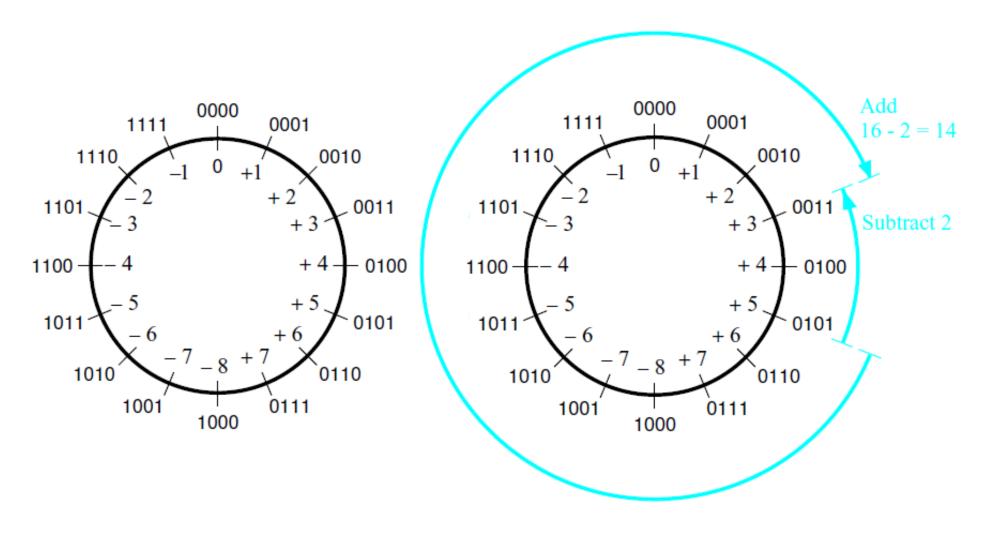

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number)

take the 2's complement

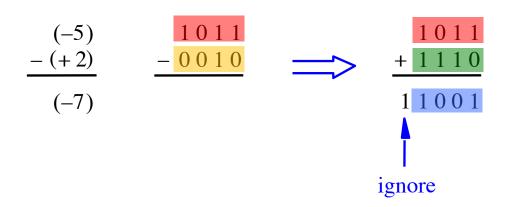

means take the 2's complement

Notice that the minus changes to a plus.

means take the 2's complement



$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1



$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Graphical interpretation of four-bit 2's complement numbers

- (a) The number circle
- (b) Subtracting 2 by adding its 2's complement

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

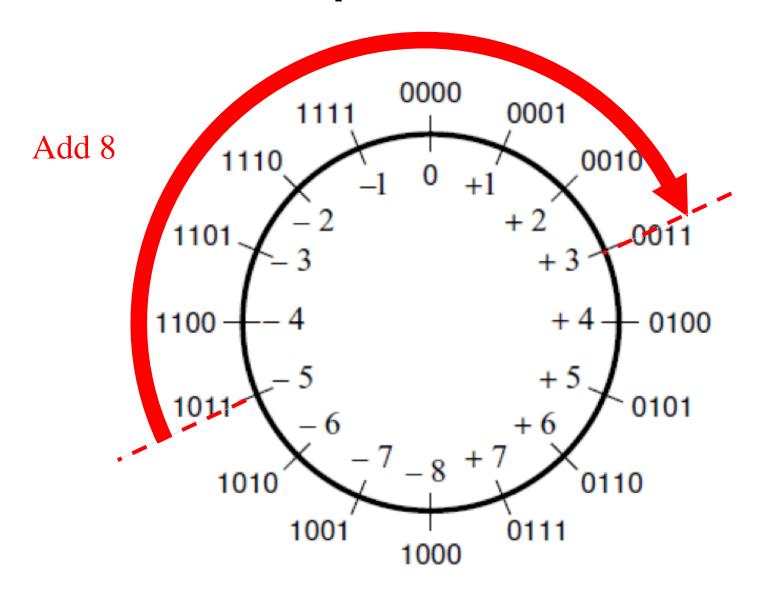
$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

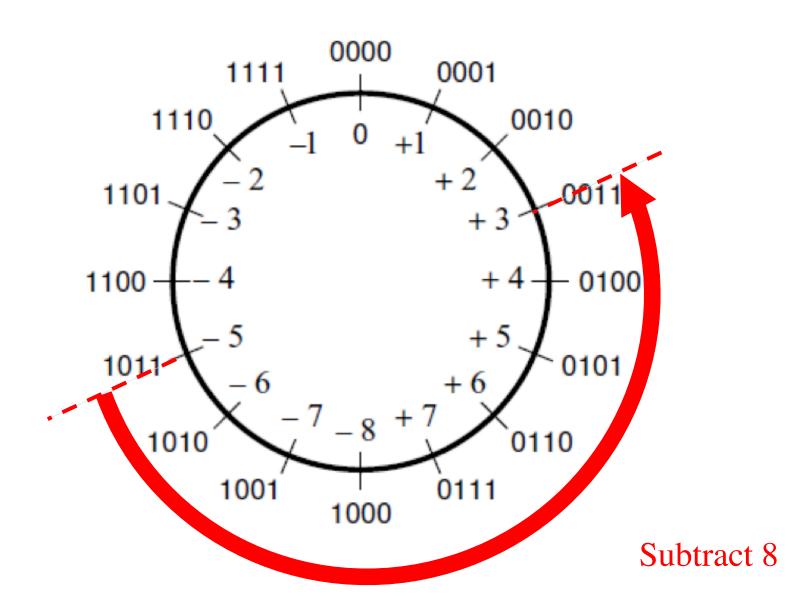
Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal
+7	0111	=>	1001	-7
+6	0110	=>	1010	-6
+5	0101	\Longrightarrow	1011	- 5
+4	0100	=>	1100	-4
+3	0011	\Longrightarrow	1101	-3
+2	0010	\Longrightarrow	1110	-2
+1	0001	=>	1111	-1
+0	0000	=>	0000	+0
-8	1000	\Longrightarrow	1000	-8
- 7	1001	\Longrightarrow	0111	+7
-6	1010	\Longrightarrow	0110	+6
-5	1011	=>	0101	+5
-4	1100	\Longrightarrow	0100	+4
-3	1101	=>	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	=>	0001	+1

Taking the 2's complement negates the number


decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal	
+7	0111	—⇒	1001	-7	
+6	0110	⇒	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	=>	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\Longrightarrow	1111	-1	This is
+0	0000	\Longrightarrow	0000	+0	the only
-8	1000	⇒	1000	-8	excepti
- 7	1001	=>	0111	+7	
-6	1010	\Longrightarrow	0110	+6	
- 5	1011	\Longrightarrow	0101	+5	
-4	1100	=>	0100	+4	
-3	1101	=>	0011	+3	
-2	1110	=>	0010	+2	
-1	1111	=>	0001	+1	

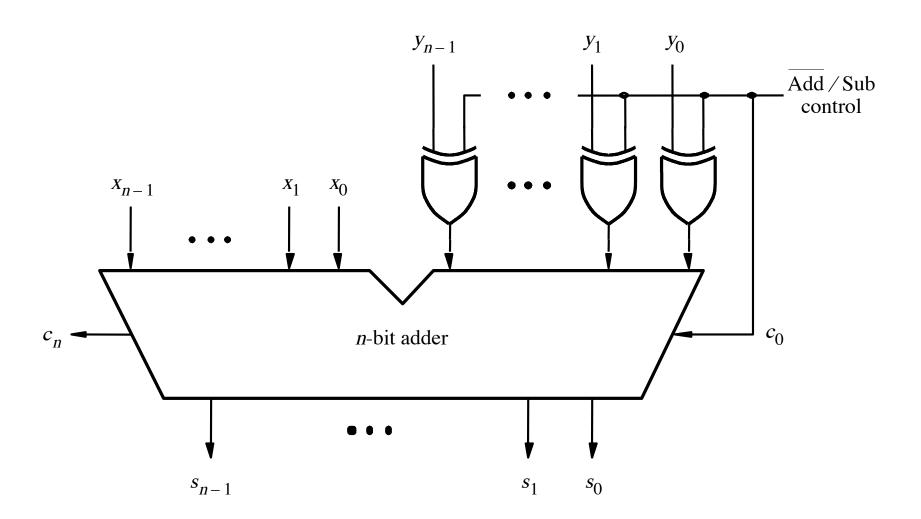
Taking the 2's complement negates the number


decimal	b ₃ b ₂ b ₁ b ₀	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal	
+7	0111	\Longrightarrow	1001	- 7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	⇒	1011	- 5	
+4	0100	=>	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	=>	1111	-1	
+0	0000	=>	0000	+0	nd thi
-8	1000	=>	1000	_8	ne too
- 7	1001	\Longrightarrow	0111	+7	
-6	1010	=>	0110	+6	
- 5	1011	=>	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	=>	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	=>	0001	+1	

But that exception does not matter

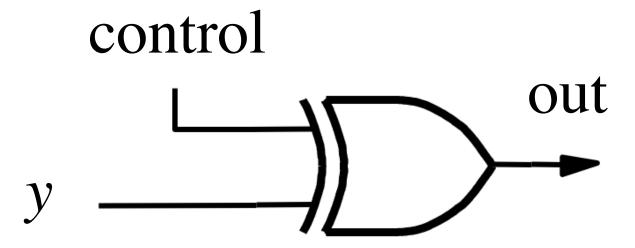
But that exception does not matter

But that exception does not matter

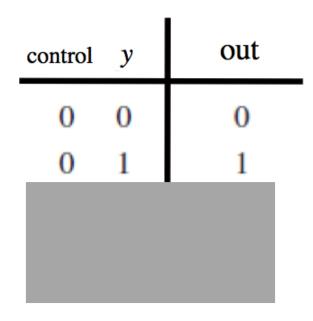


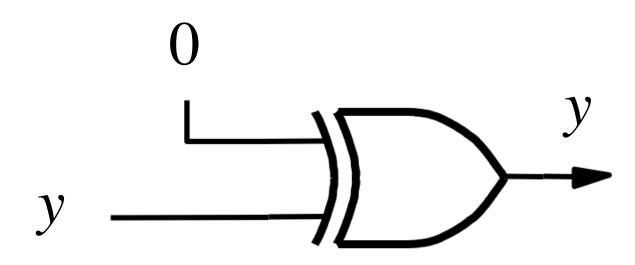
Take-Home Message

 Subtraction can be performed by simply adding the 2's complement of the second number, regardless of the signs of the two numbers.

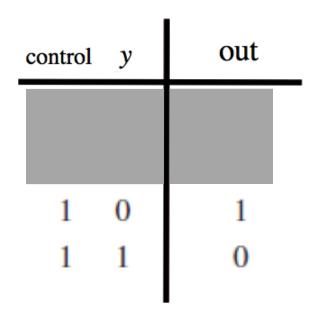

 Thus, the same adder circuit can be used to perform both addition and subtraction !!!

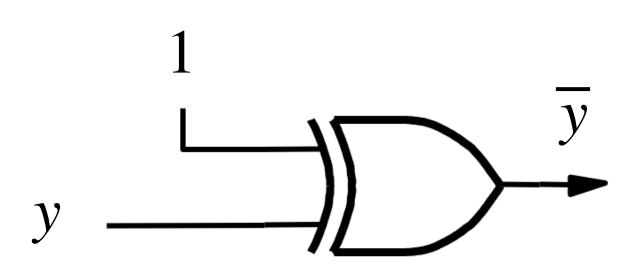
Adder/subtractor unit

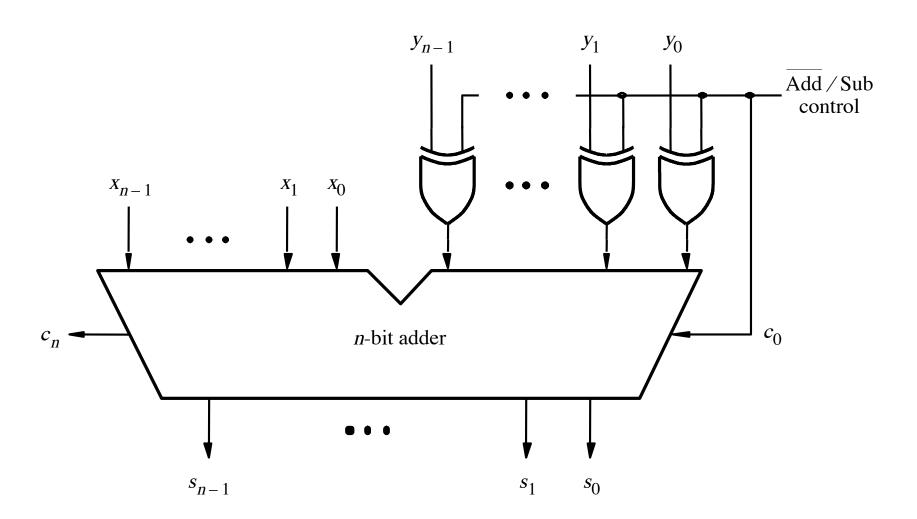



XOR Tricks

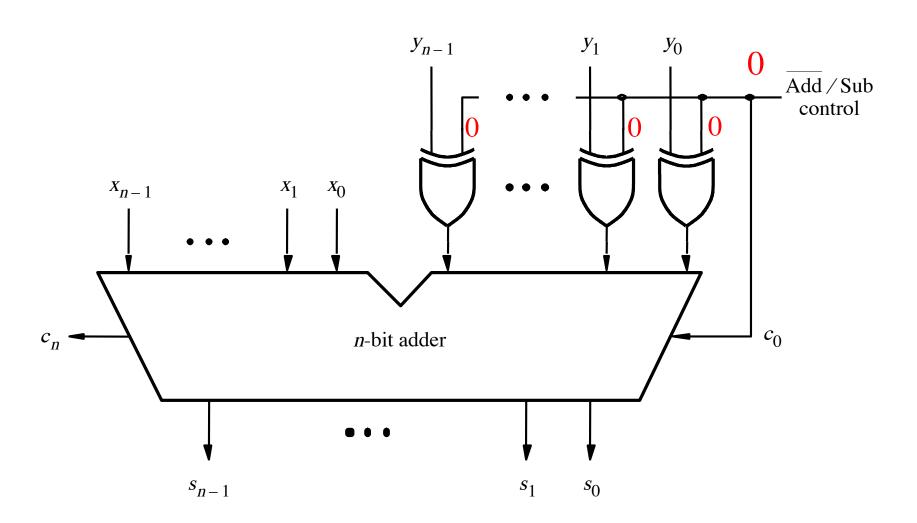
control	у	out
0	0	0
0	1	1
1	0	1
1	1	0

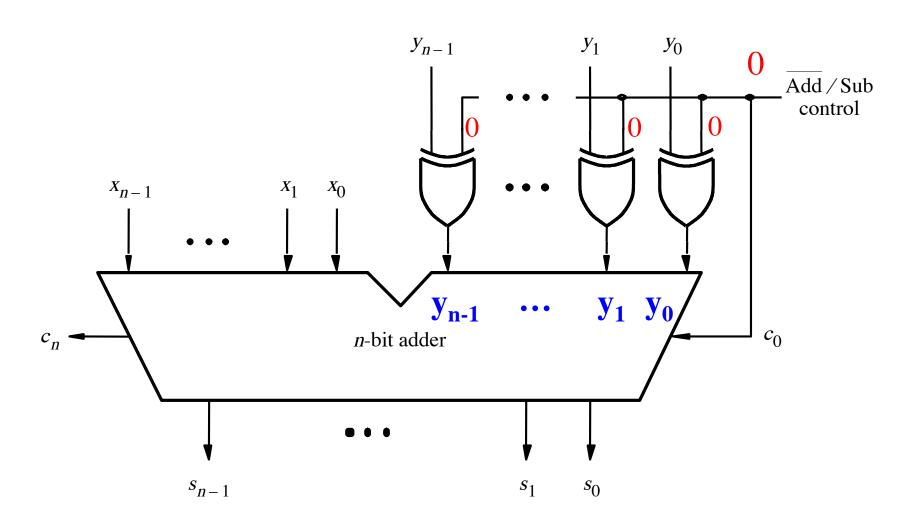


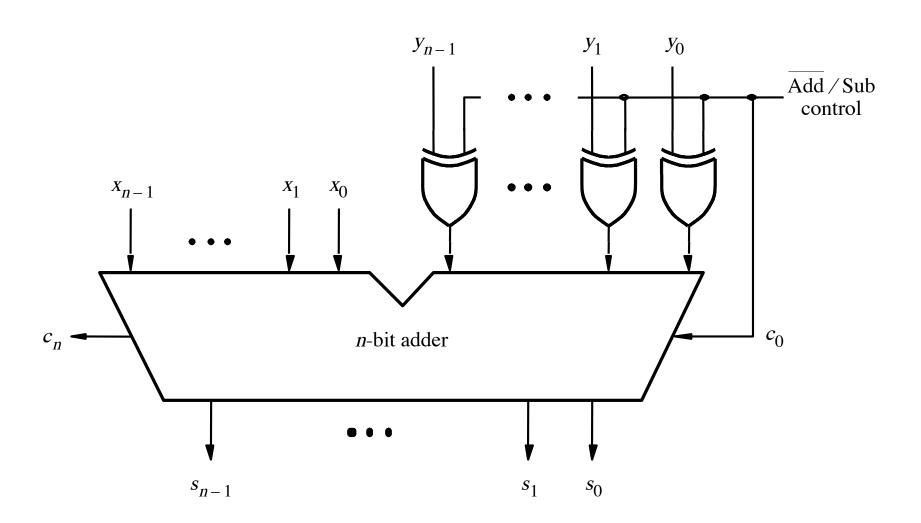

XOR as a repeater

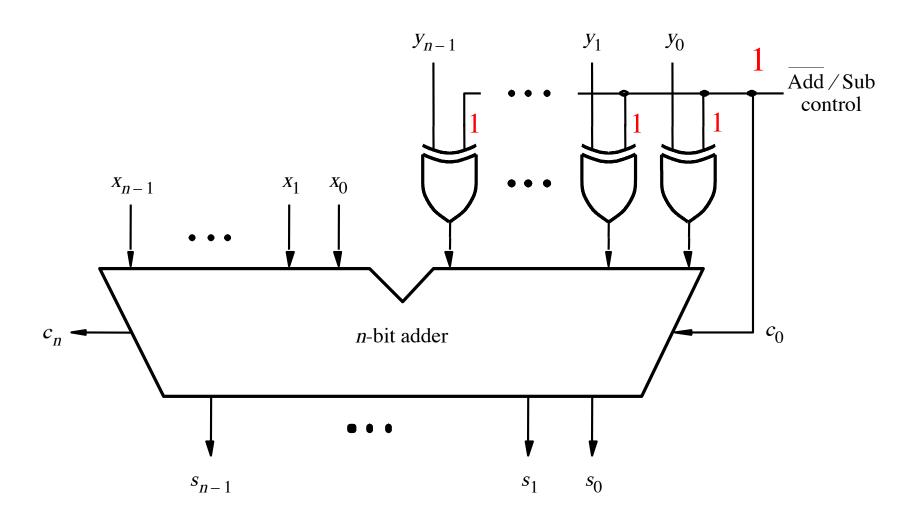


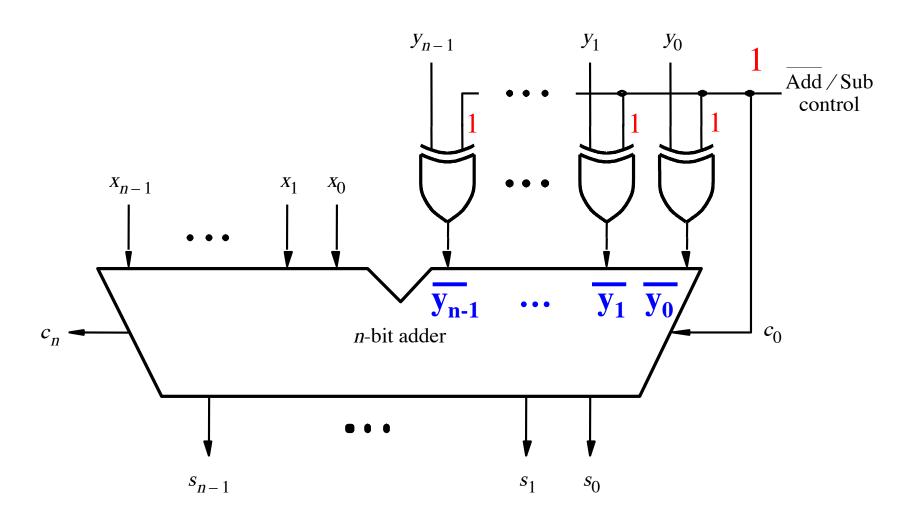
XOR as an inverter

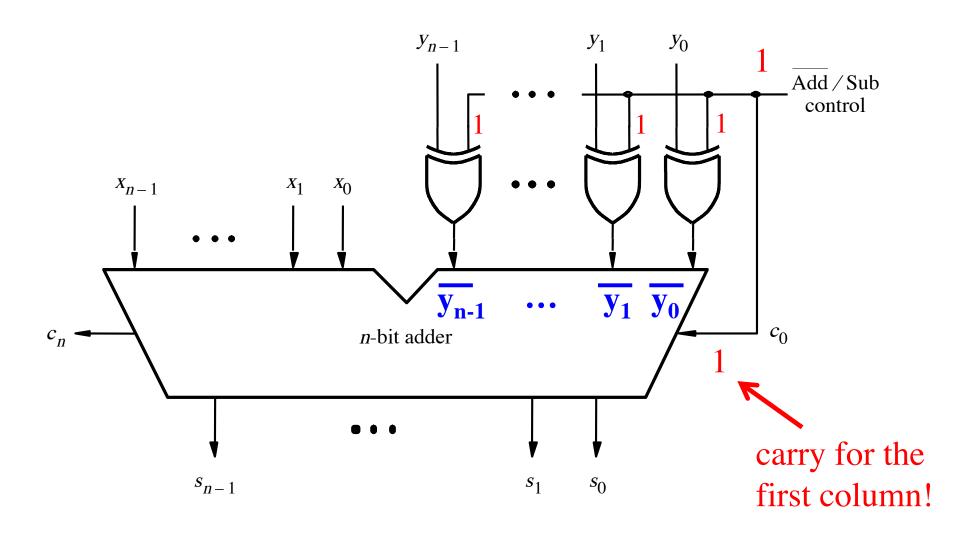



Addition: when control = 0




Addition: when control = 0




Addition: when control = 0

$$\begin{array}{ccc}
(+7) \\
+ (+2) \\
\hline
(+9) & 1001
\end{array}$$

$$\begin{array}{ccc}
(-7) & + & 1001 \\
+ & (+2) & & & 0010 \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
(+7) & + & 0 & 1 & 1 & 1 \\
+ & (-2) & & & 1 & 1 & 1 & 0 \\
\hline
(+5) & & & 1 & 0 & 1 & 0 & 1
\end{array}$$

$$\begin{array}{ccc} (-7) & + & 1001 \\ + & (-2) & & 11110 \\ \hline & & & & 10111 \end{array}$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+
\begin{array}{c}
0 1 1 0 0 \\
0 1 1 1 \\
0 0 1 0 \\
1 0 0 1
\end{array}$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
0111 \\
1110
\end{array}$$

Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+
\begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
01111 \\
11100
\end{array}$$

$$\begin{array}{c}
(-7) \\
+ (-2) \\
(-9) \\
\end{array}
+ \begin{array}{c}
10000 \\
1001 \\
1110
\end{array}$$

Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

$$c_{4} = 0$$

$$c_{3} = 1$$

$$(+7)$$

$$+ (+2)$$

$$(+9)$$

$$0 1 1 0 0$$

$$0 1 1 1$$

$$0 0 1 0$$

$$c_4 = 1$$

$$c_3 = 0$$

 $c_4 = 0$
 $c_3 = 0$

$$c_4 = 1$$
 $c_3 = 1$
 $(+7)$
 $+(-2)$

$$\begin{array}{c}
(+7) \\
(-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
01111 \\
1110
\end{array}$$

$$\begin{array}{c}
(-7) \\
+ (-2) \\
(-9)
\end{array}
+ \begin{array}{c}
10000 \\
1001 \\
1110
\end{array}$$

Include the carry bits:
$$c_4 c_3 c_2 c_1 c_0$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$
 $c_3 = 1$

$$(+7)$$

$$+ (-2)$$

$$(+5)$$

$$1 0 1 0 1$$

$$\begin{array}{c}
(-7) \\
+ (-2) \\
(-9)
\end{array}
+ \begin{array}{c}
10000 \\
1001 \\
1110
\end{array}$$

$$\begin{pmatrix} c_4 = 1 \\ c_3 = 0 \end{pmatrix}$$

Overflow occurs only in these two cases.

$$c_4 = 0$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+ \begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
01111 \\
1110
\end{array}$$

$$\begin{array}{c}
(-7) \\
+ (-2) \\
(-9) \\
\hline
\end{array}$$

$$\begin{array}{c}
10000 \\
+ 1001 \\
11110 \\
\hline
\end{array}$$

$$\begin{aligned}
c_4 &= 1 \\
c_3 &= 0
\end{aligned}$$

Overflow =
$$c_3\overline{c}_4 + \overline{c}_3c_4$$

$$c_4 = 0$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+
\begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$

$$c_3 = 1$$

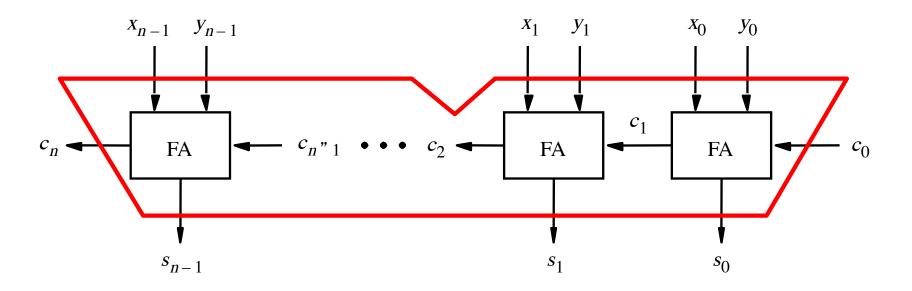
$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
0111 \\
1110 \\
10101
\end{array}$$

$$\begin{array}{c}
(-7) \\
+ (-2) \\
(-9)
\end{array}
+ \begin{array}{c}
10000 \\
1001 \\
1110
\end{array}$$

$$c_4 = 1$$

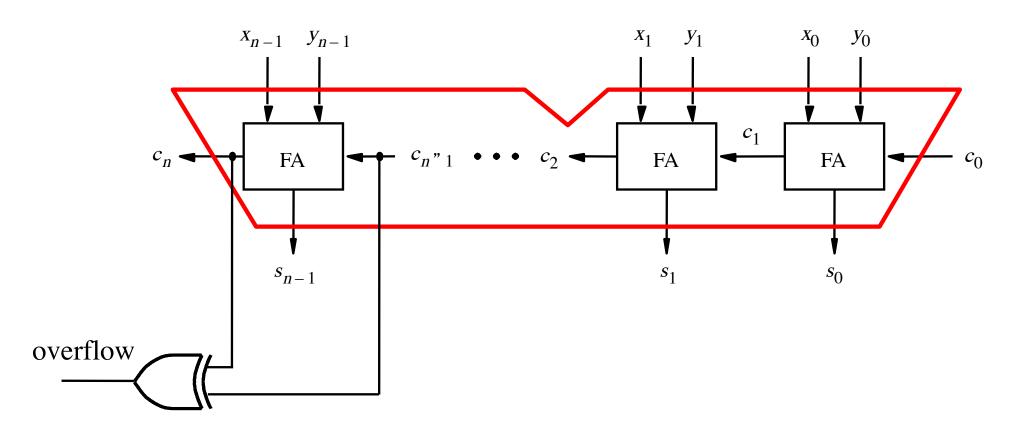
$$c_3 = 0$$

Overflow =
$$c_3\overline{c_4} + \overline{c_3}c_4$$
XOR


Calculating overflow for 4-bit numbers with only three significant bits

Overflow =
$$c_3\bar{c}_4 + \bar{c}_3c_4$$

= $c_3 \oplus c_4$


Calculating overflow for n-bit numbers with only n-1 significant bits

Overflow =
$$c_{n-1} \oplus c_n$$

Detecting Overflow

Detecting Overflow (with one extra XOR)

Another way to look at the overflow issue

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

$$\begin{array}{ccc}
(+7) \\
+ (+2) \\
\hline
(+9) & 1001
\end{array}$$

$$\begin{array}{ccc}
(-7) & + & 1001 \\
+ & (+2) & & & 0010 \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\end{array}$$

$$\begin{array}{ccc}
(+7) & + & 0 & 1 & 1 & 1 \\
+ & (-2) & & & 1 & 1 & 1 & 0 \\
\hline
(+5) & & & 1 & 0 & 1 & 0 & 1
\end{array}$$

$$\begin{array}{ccc} (-7) & + & 1001 \\ + & (-2) & & 1110 \\ \hline & & & & 10111 \end{array}$$

$$\begin{array}{c|cccc}
 & (-7) \\
 & + (+2) \\
\hline
 & (-5) \\
\end{array}
+ \begin{array}{c|cccc}
 & 1 & 0 & 0 & 1 \\
 & 0 & 0 & 1 & 0 \\
\hline
 & 1 & 0 & 1 & 1 \\
\end{array}$$

$$x_3 = 0$$

 $y_3 = 0$
 $s_3 = 1$
 $(+7)$
 $+(+2)$
 $(+9)$
 $+ 0$
 0
 1
 0
 1
 0
 1
 0
 1

$$x_3 = 1$$

$$y_3 = 0$$

$$s_3 = 1$$

$$x_3 = 1$$

$$y_3 = 1$$

$$s_3 = 0$$

 $x_3 = 1$

 $y_3 = 0$
 $s_3 = 1$

$$x_3 = 0$$

 $y_3 = 0$
 $s_3 = 1$
 $+ (+7)$
 $+ (+2)$
 $+ (+2)$
 $+ (+2)$
 $+ (+2)$
 $+ (+2)$
 $+ (-7)$
 $+ (+2)$
 $+ (-5)$
 $+ (-5)$

$$x_3 = 0$$

 $y_3 = 1$
 $s_3 = 0$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$

In 2's complement, both +9 and -9 are not representable with 4 bits.

$$x_3 = 1$$

$$y_3 = 1$$

$$s_3 = 0$$

Overflow occurs only in these two cases.

$$x_{3} = 0$$

$$y_{3} = 0$$

$$s_{3} = 1$$

$$+ (+2)$$

$$(+9)$$

$$x_{3} = 1$$

$$y_{3} = 0$$

$$+ (+2)$$

$$+ (+2)$$

$$1001$$

$$x_{3} = 1$$

$$+ (+2)$$

$$+ (+2)$$

$$-5)$$

$$1011$$

$$x_3 = 0$$

 $y_3 = 1$
 $s_3 = 0$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$
 $+ (-2)$

Overflow =
$$\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$$

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Overflow =
$$\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$$

Questions?

THE END