

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Registers and Counters

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- The second midterm is this Friday.
- Homework 8 is due today.
- Homework 9 is out. It is due on Mon Nov 6.
- No HW due next Monday

Administrative Stuff

- Midterm Exam \#2
- When: Friday October 27 @ 4pm.
- Where: This classroom
- What: Chapters 1, 2, 3, 4 and 5.1-5.8
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).

Registers

Register (Definition)

An n-bit structure consisting of flip-flops

Parallel-Access Register

1-Bit Parallel-Access Register

1-Bit Parallel-Access Register

The 2-to-1 multiplexer is used to select whether to load a new value into the D flip-flop or to retain the old value.

The output of this circuit is the Q output of the flip-flop.

1-Bit Parallel-Access Register

If Load $=\mathbf{0}$, then retain the old value.

If Load = 1, then load the new value from In.

2-Bit Parallel-Access Register

2-Bit Parallel-Access Register

3-Bit Parallel-Access Register

Notice that all flip-flops are on the same clock cycle.

3-Bit Parallel-Access Register

Parallel Output

4-Bit Parallel-Access Register

4-Bit Parallel-Access Register

Shift Register

A simple shift register

[Figure 5.17a from the textbook]

A simple shift register

Positive-edge-triggered
D Flip-Flop

A simple shift register

Clock

A simple shift register

(a) Circuit

	In	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{4}=$ Out
t_{0}	1	0	0	0	0
t_{1}	0	1	0	0	0
t_{2}	1	0	1	0	0
t_{3}	1	1	0	1	0
t_{4}	1	1	1	0	1
t_{5}	0	1	1	1	0
t_{6}	0	0	1	1	1
t_{7}	0	0	0	1	1

(b) A sample sequence
[Figure 5.17 from the textbook]

Parallel-Access Shift Register

Parallel-access shift register

[Figure 5.18 from the textbook]

Parallel-access shift register

When Load=0, this behaves like a shift register.
[Figure 5.18 from the textbook]

Parallel-access shift register

When Load=1, this behaves like a parallel-access register.
[Figure 5.18 from the textbook]

Shift Register With Parallel Load and Enable

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

A shift register with parallel load and enable control inputs

The directions of the input and output lines are switched relative to the previous slides.
[Figure 5.59 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

Multiplexer Tricks
 (select one of two 2-bit numbers)

Select Either $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$

Select Either $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$

Select Either $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$

Multiplexer Tricks (select one of four 2-bit numbers)

Select $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$ or $C=C_{1} C_{0}$ or $D=D_{1} D_{0}$

Select $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$ or $C=C_{1} C_{0}$ or $D=D_{1} D_{0}$

Select $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$ or $C=C_{1} C_{0}$ or $D=D_{1} D_{0}$

Select $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$ or $C=C_{1} C_{0}$ or $D=D_{1} D_{0}$

Select $A=A_{1} A_{0}$ or $B=B_{1} B_{0}$ or $C=C_{1} C_{0}$ or $D=D_{1} D_{0}$

Register File

Complete the following circuit diagram to implement a register file with four 2-bit registers, one write port, one read port, and one write enable line.

$\begin{array}{ll}-w_{0} & y_{0}- \\ w_{1} & y_{1} \\ E n & y_{2}- \\ y_{3}\end{array}-$

$=0$	1	1
0	0	0

Register 1

Register 2

Register 3
$\begin{array}{ll}-w_{0} & y_{0} \\ w_{1} & y_{1} \\ -E n & y_{2} \\ E n & y_{3}\end{array}-$

Register B

Register C

Register D

$\stackrel{1111}{=598}$

Register B

Register C

Register D

$\stackrel{\mid 1111}{=528}$
$\stackrel{1111}{=528}$

Another Register File

Register File

- Register file is a unit containing registers
- r can be 4, 8, 16, 32, etc.
- Each register has \mathbf{n} bits
- n can be $4,8,16,32$, etc.
- n defines the data path width
- Output ports (DATA1 and DATA2) are used for reading the register file
- Any register can be read from any of the ports
- Each port needs a $\log _{2} r$ bits to specify the read
 address (RA1 and RA2)
- Input port (LD_DATA) is used for writing data to the register file
- Write address is also specified by $\log _{2} r$ bits (WA)
- Writing is enabled by a 1-bit signal (WR)

Register File: Exercise

- Suppose that a register file
- contains 32 registers
- width of data path is 16 bits (i.e., each register has 16 bits)
- How many bits are there for each of the signals?
- RA1

5

- RA2
- DATA1
- DATA2
- WA
- LD_DATA

5

- WR

16
WR

Register file design

- We will design an eight-register file with 4-bit wide registers
- A single 4-bit register and its abstraction are shown below

- We have to use eight such registers to make an eight register file

- How many bits are required to specify a register address?

Reading Circuit

- A 3-bit register address, RA, specifies which register is to be read
- For each output port, we need one 8-to-1 4-bit multiplier

Register
Address

Adding write control to register file

- To write to any register, we need the register's address (WA) and a write register signal (WR)
- A 3-bit write address is decoded if write register signal is present
- One of the eight registers gets a LD signal from the decoder

Register File (More Examples)

Register File

Gray lines are 1-bit signals
Black lines are 10 -bit signals

Counters

T Flip-Flop (circuit and graphical symbol)

[Figure 5.15a,c from the textbook]

The output of the T Flip-Flop divides the frequency of the clock by 2

The output of the T Flip-Flop divides the frequency of the clock by 2

A three-bit down-counter

[Figure 5.20 from the textbook]

A three-bit down-counter

The first flip-flop changes
on the positive edge of the clock
[Figure 5.20 from the textbook]

A three-bit down-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes on the positive edge of Q_{0}

A three-bit down-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes The third flip-flop changes on the positive edge of Q_{0} on the positive edge of Q_{1}

A three-bit down-counter

(b) Timing diagram
[Figure 5.20 from the textbook]

A three-bit down-counter

A three-bit down-counter

A three-bit down-counter

A three-bit down-counter

(b) Timing diagram

A three-bit down-counter

A three-bit up-counter

[Figure 5.19 from the textbook]

A three-bit up-counter

The first flip-flop changes
on the positive edge of the clock
[Figure 5.19 from the textbook]

A three-bit up-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes on the positive edge of $\overline{\mathrm{Q}}_{0}$

A three-bit up-counter

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes The third flip-flop changes on the positive edge of $\overline{\mathrm{Q}}_{0} \quad$ on the positive edge of $\overline{\mathrm{Q}}_{1}$

A three-bit up-counter

(a) Circuit

[Figure 5.19 from the textbook]

A three-bit up-counter

[Figure 5.19 from the textbook]

A three-bit up-counter

(a) Circuit

(b) Timing diagram
[Figure 5.19 from the textbook]

A three-bit up-counter

(a) Circuit

(b) Timing diagram

A three-bit up-counter

(a) Circuit

(b) Timing diagram

A three-bit up-counter

(a) Circuit

(b) Timing diagram

A three-bit up-counter

(a) Circuit

(b) Timing diagram

A three-bit up-counter

(b) Timing diagram

A three-bit up-counter

[Figure 5.19 from the textbook]

Synchronous Counters

A four-bit synchronous up-counter

[Figure 5.21 from the textbook]

A four-bit synchronous up-counter

The propagation delay through all AND gates combined must not exceed the clock period minus the setup time for the flip-flops

A four-bit synchronous up-counter

(b) Timing diagram
[Figure 5.21 from the textbook]

Derivation of the synchronous up-counter

Clock cycle	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$		
0	0	0	0
1	0	0	1
2	0	1	0
3			
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

Derivation of the synchronous up-counter

Clock cycle	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	Q_{1} changes
0	0 0 0	
1	$\begin{array}{llll}0 & 0 & 1\end{array}$	$\square \mathrm{Q}_{2}$ changes
2	$0 \quad 1 \quad 0 \leftharpoonup$ -	
3	$\begin{array}{lll}0 & 1 & 1\end{array}$	
4	100	
5	$1 \begin{array}{lll}1 & 0 & 1\end{array}$	
6	$110 \longrightarrow$	
7	$\begin{array}{lll}1 & 1 & 1\end{array}$	
8	$0 \quad 0 \quad 0 \leftharpoonup$	
$\mathrm{T}_{0}=1$		
$\mathrm{T}_{1}=\mathrm{Q}_{0}$		
$\mathrm{T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}$		

[Table 5.1 from the textbook]

A four-bit synchronous up-counter

$$
\begin{aligned}
& \mathrm{T}_{0}=1 \\
& \mathrm{~T}_{1}=\mathrm{Q}_{0} \\
& \mathrm{~T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}
\end{aligned}
$$

[Figure 5.21 from the textbook]

In general we have

$$
\begin{aligned}
& \mathrm{T}_{0}=1 \\
& \mathrm{~T}_{1}=\mathrm{Q}_{0} \\
& \mathrm{~T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1} \\
& \mathrm{~T}_{3}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \\
& \ldots \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \ldots \mathrm{Q}_{\mathrm{n}-1}
\end{aligned}
$$

Synchronous v.s. Asynchronous Clear

2-Bit Synchronous Up-Counter (without clear capability)

2-Bit Synchronous Up-Counter (with asynchronous clear)

2-Bit Synchronous Up-Counter (with asynchronous clear)

This is the same circuit but uses D Flip-Flops.

2-Bit Synchronous Up-Counter (with synchronous clear)

This counter can be cleared only on the positive clock edge.

Adding Enable Capability

A four-bit synchronous up-counter

[Figure 5.21 from the textbook]

Inclusion of Enable and Clear Capability

[Figure 5.22 from the textbook]

Inclusion of Enable and Clear Capability

[Figure 5.22 from the textbook]

Providing an enable input for a D flip-flop

(a) Using a multiplexer

(b) Clock gating

Synchronous Counter (with D Flip-Flops)

A four-bit counter with D flip-flops

[Figure 5.23 from the textbook]

Counters with Parallel Load

A 4-bit up-counter with D flip-flops

[Figure 5.23 from the textbook]

A 4-bit up-counter with D flip-flops

[Figure 5.23 from the textbook]

Equivalent to this circuit with T flip-flops

Equivalent to this circuit with T flip-flops

But has one extra output called Z , which can be used to connect two 4-bit counters to make an 8 -bit counter.

When $\mathrm{Z}=1$ the counter will go 0000 on the next clock edge, i.e., the outputs of all flip-flops are currently 1 (maximum count value).

Counters with Parallel Load

A counter with parallel-load capability

[Figure 5.24 from the textbook]

How to load the initial count value

Set the initial count on the parallel load lines
(in this case 5).

How to zero a counter

Set "Load" to 1, to open the

How to zero a counter

Reset Synchronization

Motivation

- An n-bit counter counts from $\mathbf{0 , 1}, \ldots, \mathbf{2 n}^{\mathbf{n}} \mathbf{- 1}$
- For example a 3-bit counter counts up as follow
- $0,1,2,3,4,5,6,7,0,1,2, \ldots$
- What if we want it to count like this
- $0,1,2,3,4,5,0,1,2,3,4,5,0,1, \ldots$
- In other words, what is the cycle is not a power of 2?

What does this circuit do?

[Figure 5.25a from the textbook]

A modulo-6 counter with synchronous reset

(a) Circuit

(b) Timing diagram

A modulo-6 counter with asynchronous reset

[Figure 5.26 from the textbook]

A modulo-6 counter with asynchronous reset

(b) Timing diagram
[Figure 5.26 from the textbook]

Questions?

THE END

