

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

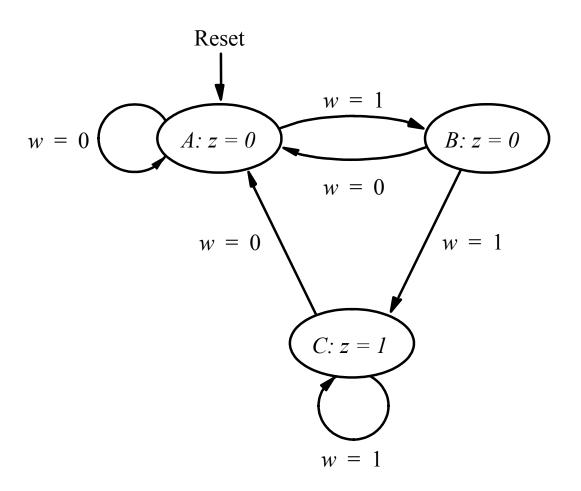
Synchronous Sequential Circuits Basic Design Steps

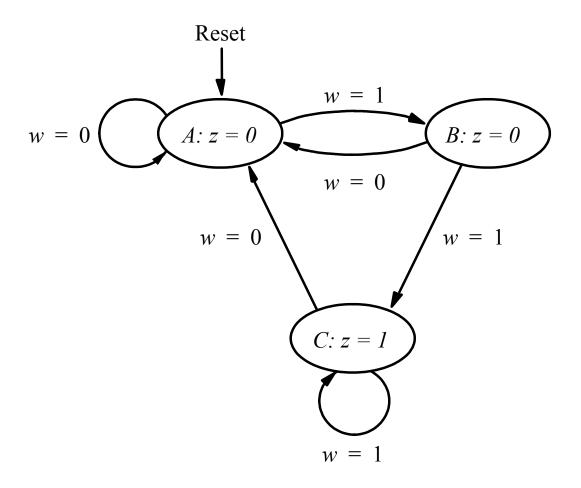
CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

First Design Pattern: Moore Machines

Moore Machine:

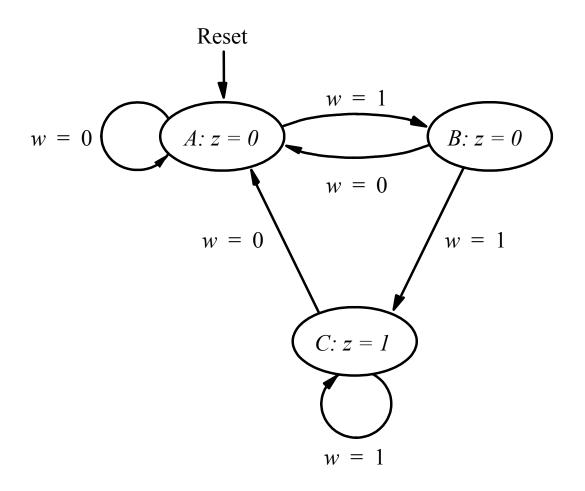
A Type of Finite State Machine (FSM)



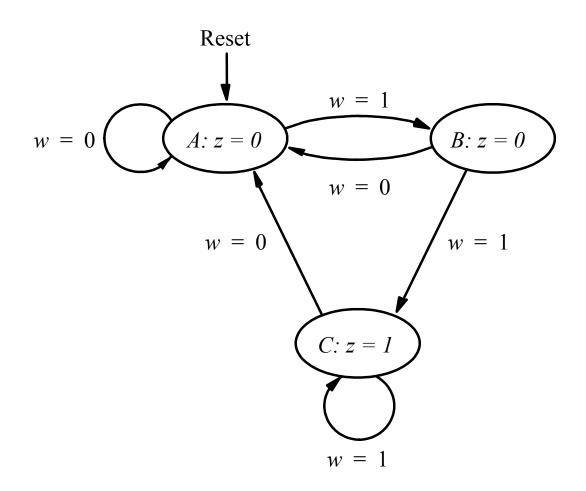


- Finite number of states (nodes).
- Discrete state transitions (edges).
- Only "in" one state at a time.
- One reset state
- Every state has an outgoing state transition for each possible input.

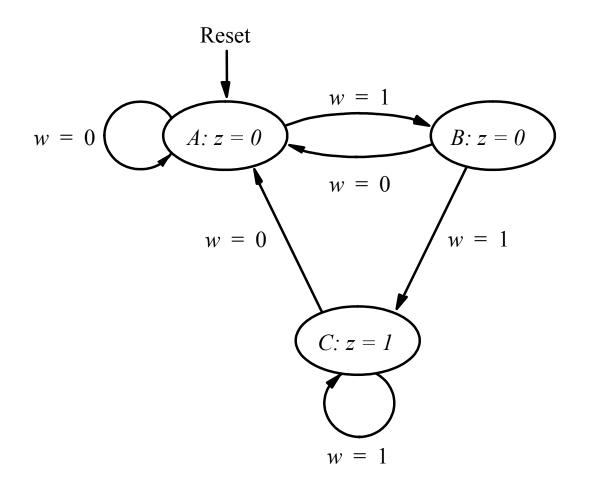
[Figure 6.3 from the textbook]



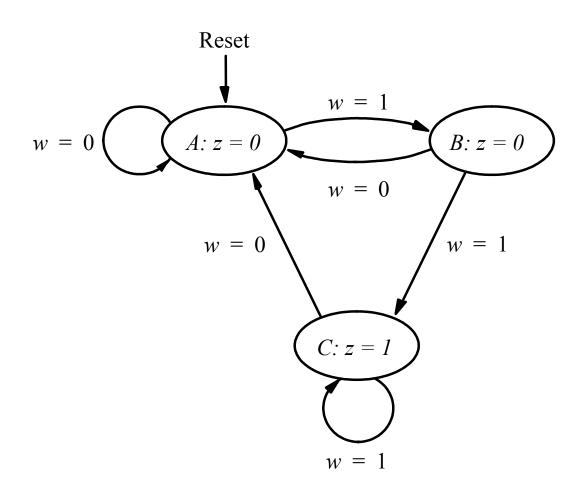
Key: The next state depends on both the current state and the current input.



Key: The output depends only on the current state.

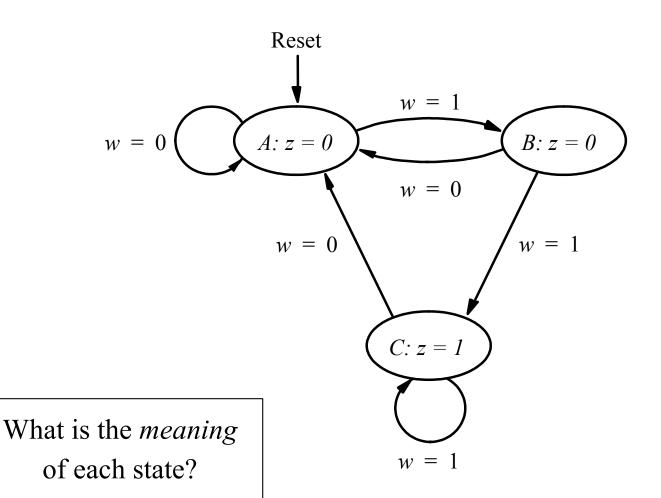


Clockcycle:	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t ₇	t_8	t ₉	t ₁₀
											1
z:	0	0	0	0	0	1	0	0	1	1	0



In general, we need to start tracing from the beginning to know which state the FSM is in. It may not be clear from a short sequence of outputs.

Clockcycle: w:	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t ₇	t_8	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
<i>z</i> :	0	0	0	0	0	1	0	0	1	1	0



Clockcycle: t_0 t_1 t_2 t_3 t_6 t_4 t_5 t_7 t_8 t9 t_{10} 0 0 w: 0 0 0 0 0 0 0 Z:



Clockcycle:	t_0	t_1	t_2	t ₃	t_4	t_5	t ₆	t ₇	t_8	t ₉	t ₁₀
	0		_				_			_	_
z:	0	0	0	0	0	1	0	0	1	1	0

What is a State?

It is not really a memory of every past input (We might run out of space to remember it all!)

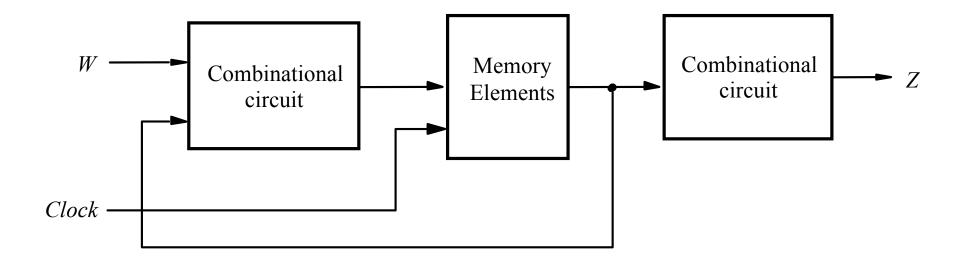
Rather, it is a characterization or snapshot of the pattern of inputs that have come before.

Moore Machine Implementation

The state diagram is just an illustration to help us describe and reason about how the FSM will behave in each of its states.

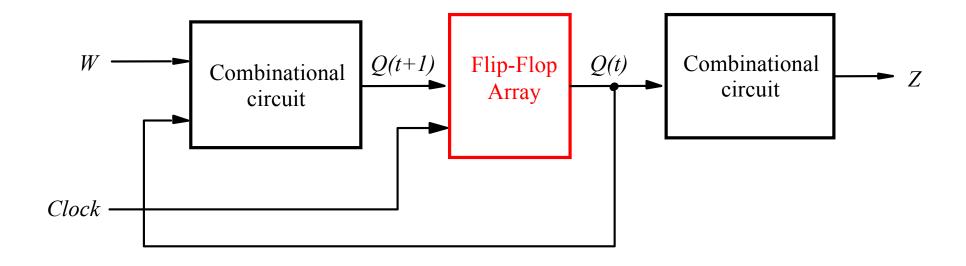
So, how do we turn it into a circuit?

Moore Machine Implementation



Note: The W and Z lines need not be wires. They can be buses.

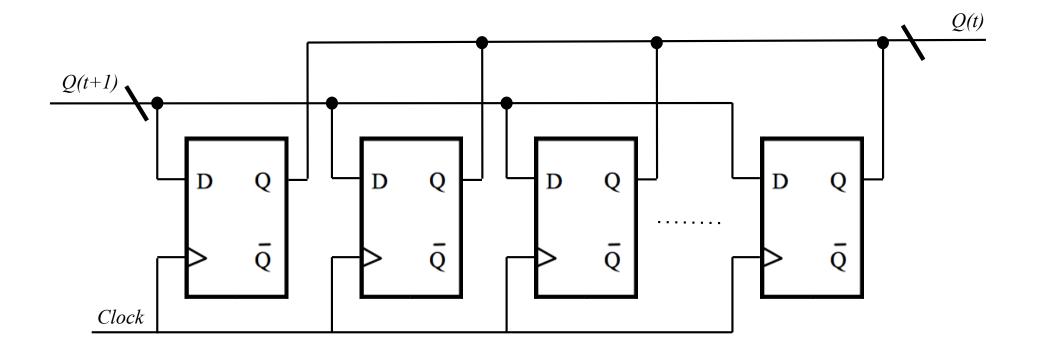
State Storage



Any usable "memory" of the preceding input sequence is encoded in the flip-flop array.

FSM States

The Flip-Flop array stores an encoding of the current state.



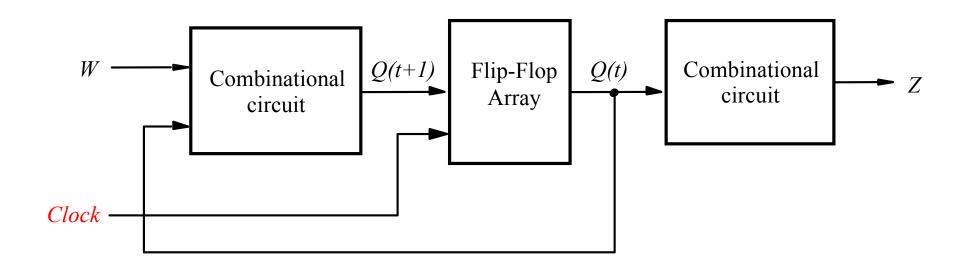
State Encoding

Each of the states in our design is identified by a distinct code.

If we use 3 flip-flops, then the FSM can have up to $2^3 = 8$ distinct states.

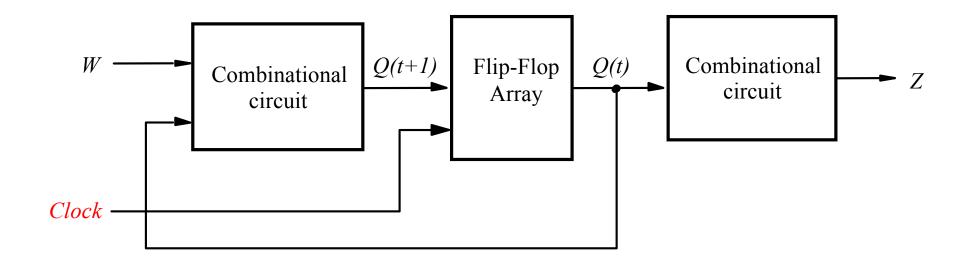
So, when the flip-flop array contains the code 011, we say that the machine is in state 011.

Synchronous Design



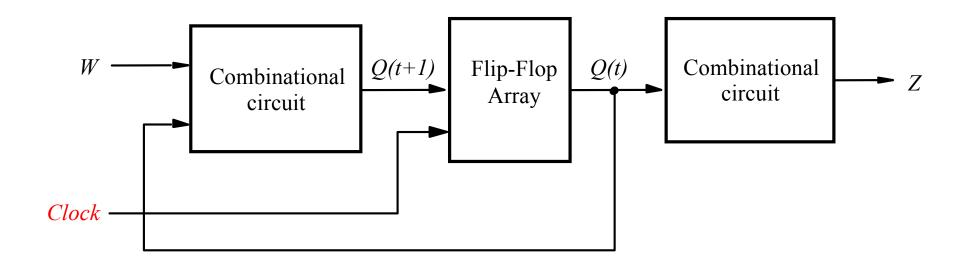
Every active clock edge causes a state transition.

Synchronous Design



We expect the input signals to be stable before the *active clock edge* occurs.

Synchronous Design



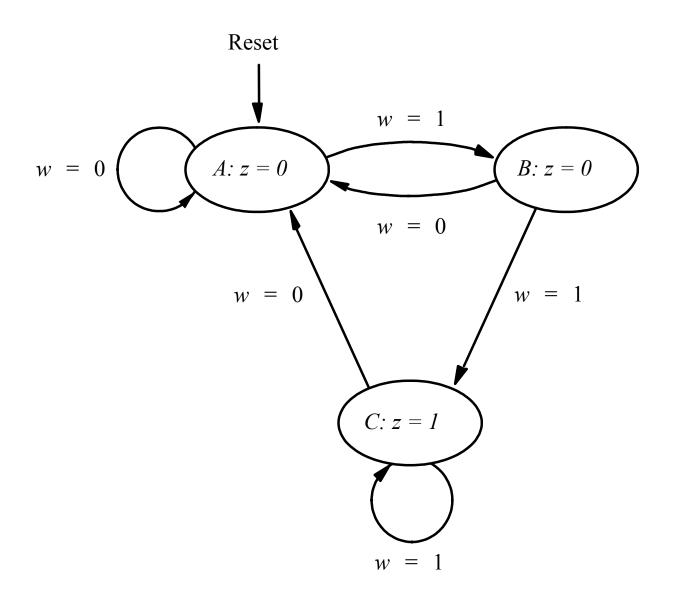
There is a whole other class of sequential circuits that are asynchronous, but we will not study them in this course.

Sequential Circuits: Key Ideas

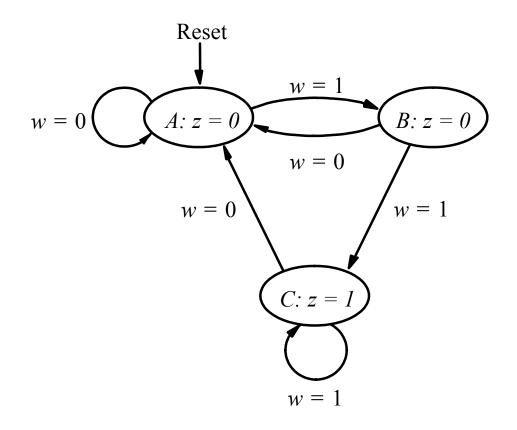
The current output depends on something about the preceding sequence of inputs (and maybe the current output).

Using *memory elements* (i.e., flip-flops), we design the circuit to remember some *relevant* information about the prior inputs.

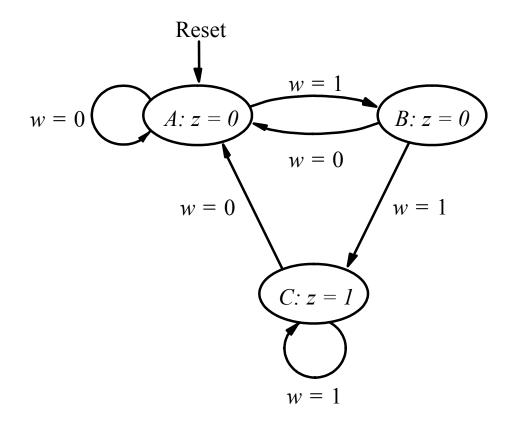
Example



We need to find both the *next state logic* and the *output logic* implied by this machine.



Present	Next	Output	
state	w = 0	w = 1	Z
A			
В			
C			



Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

Figure 6.4 from the textbook]

How to represent the States?

One way is to encode each state with a 2-bit binary number

 $A \sim 00$

B~01

C ~ 10

How to represent the states?

One way is to encode each state with a 2-bit binary number

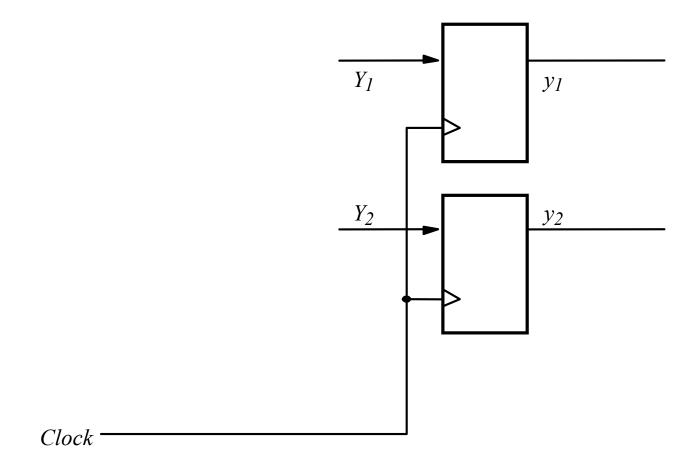
 $A \sim 00$

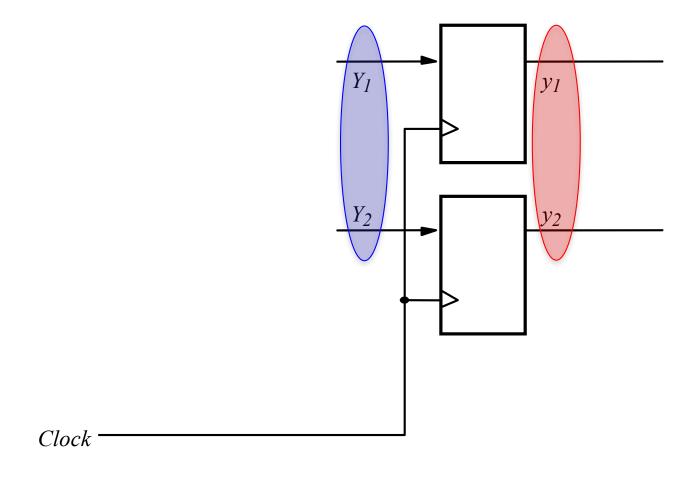
B~01

C ~ 10

How many flip-flops do we need?

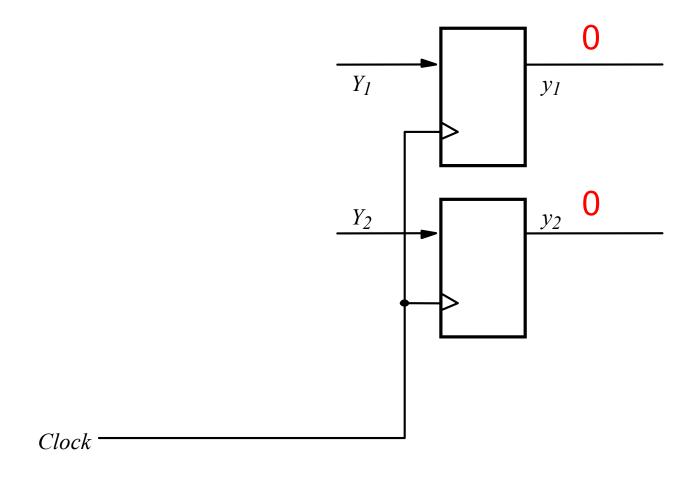
Let's use two flip-flops to hold the machine's state



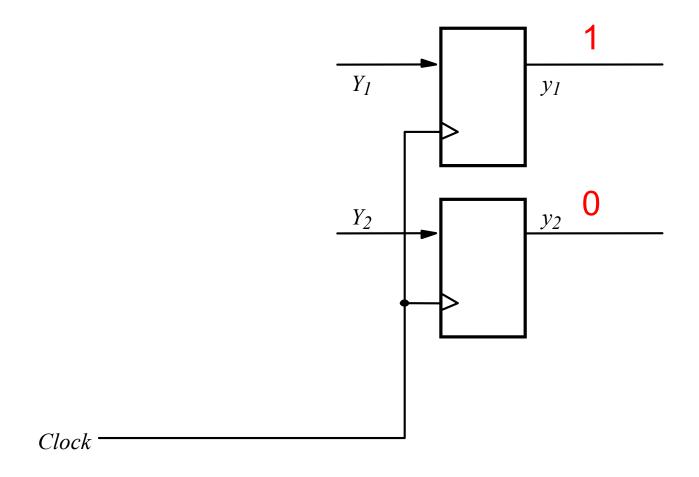


We will call y_1 and y_2 the present state variables.

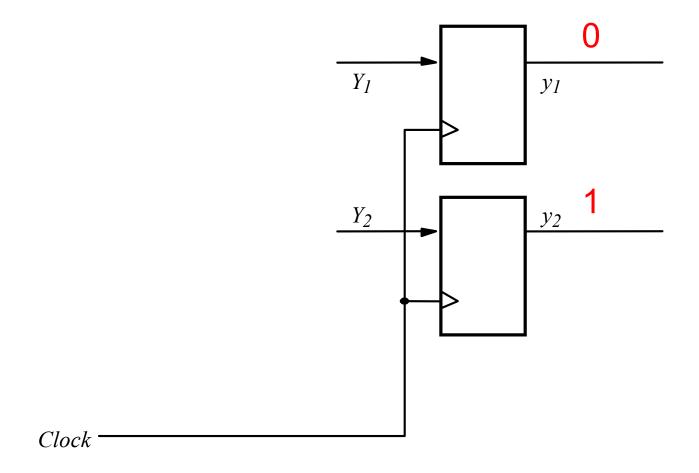
We will call Y_1 and Y_2 the *next state variables*.



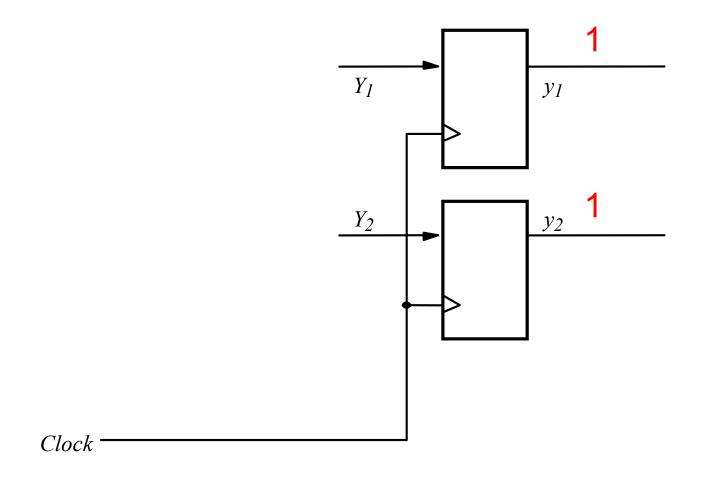
Two zeros on the output JOINTLY represent state A.



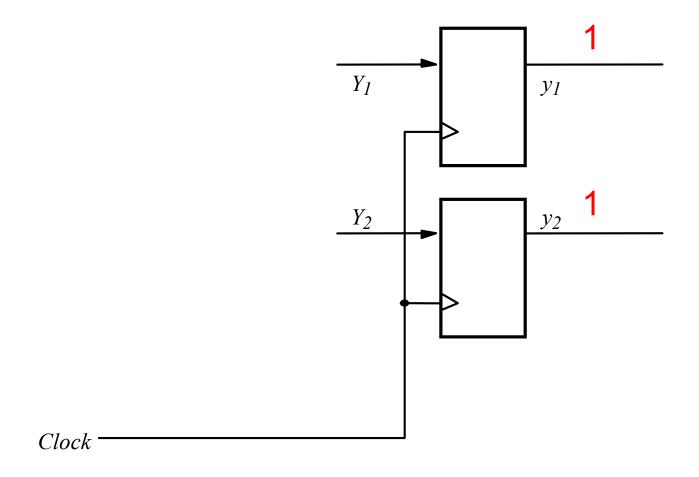
This flip-flop output pattern represents state B.



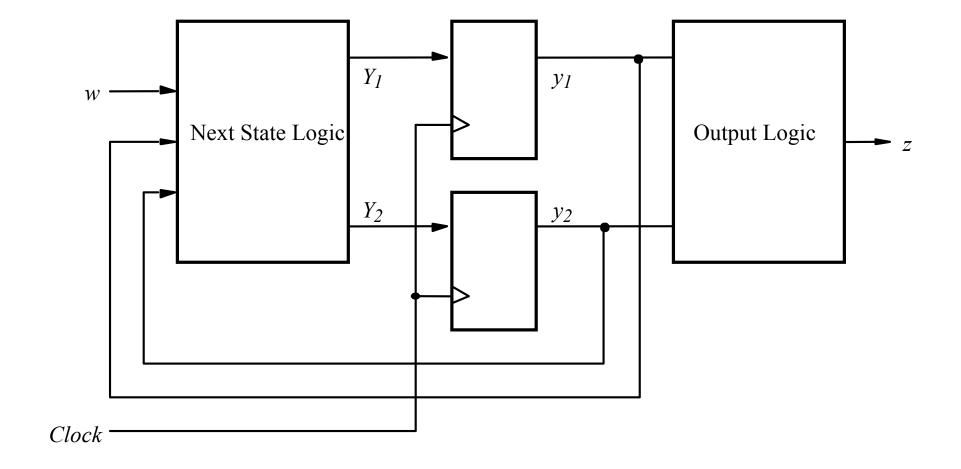
This flip-flop output pattern represents state C.

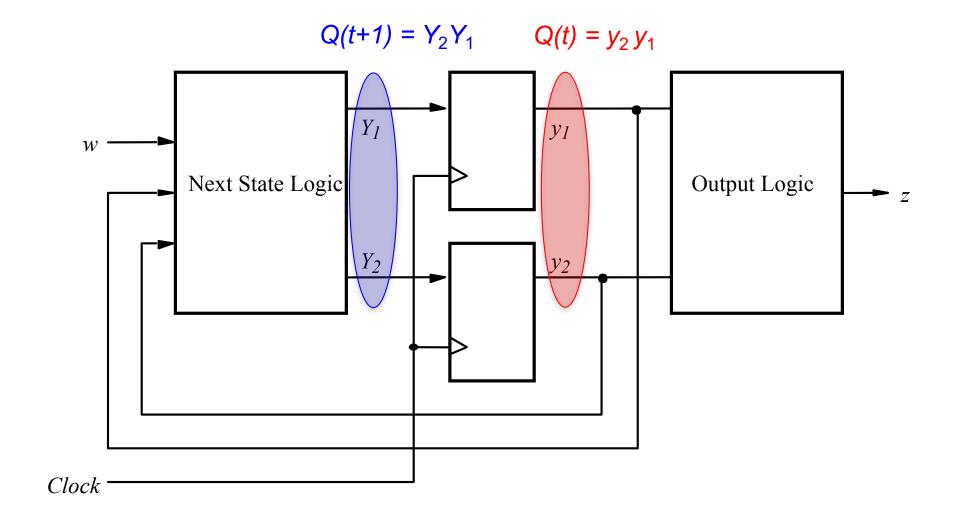


What does this flip-flop output pattern represent?



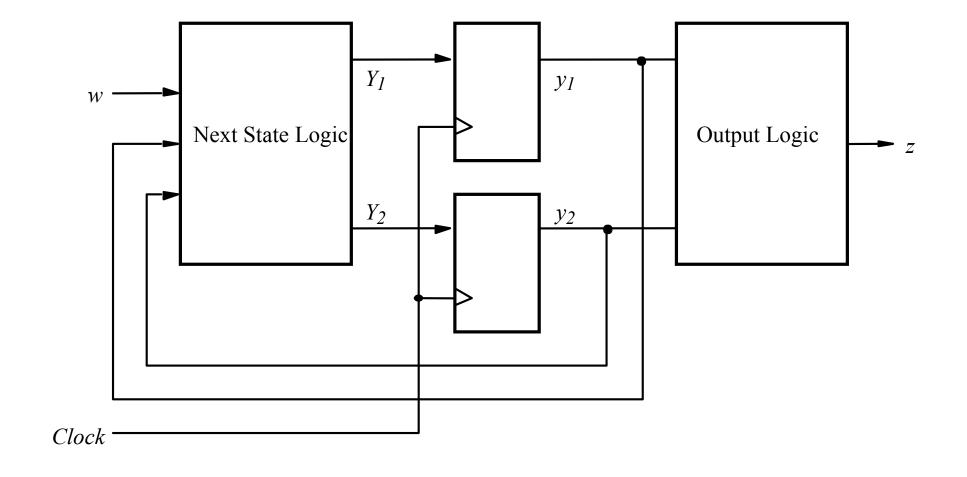
This would be state D, but we don't have one in this example. So this is an impossible state.



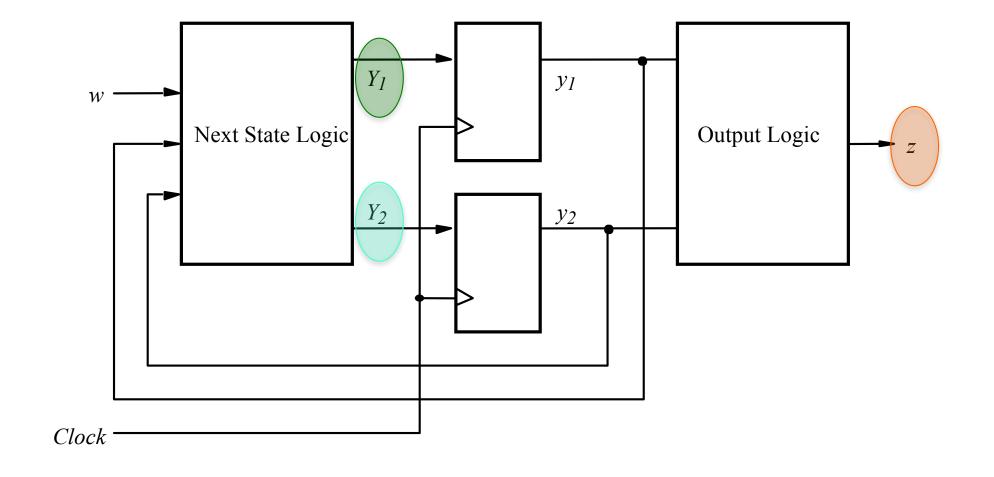


We will call y_1 and y_2 the present state variables.

We will call Y_1 and Y_2 the *next state variables*.



We need to find logic expressions for $Y_1(w, y_1, y_2)$, $Y_2(w, y_1, y_2)$, and $z(y_1, y_2)$.



We need to find logic expressions for $Y_1(w, y_1, y_2)$, $Y_2(w, y_1, y_2)$, and $z(y_1, y_2)$.

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
С	A	C	1

Suppose we encoded our states in the same order in which they were labeled:

A ~ 00

B ~ 01

C ~ 10

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	\mathbf{C}	0
C	A	C	1

	Present	Next state		
	state	w = 0 $w = 1$	Output	
			Z	
A	00			
В	01			
C	10			
	11			
	4	I	I II	

The finite state machine will never reach a state encoded as 11.

Figure 6.6 from the textbook]

Present	Next state		Output
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

	Present	Next s		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	10	0
C	10	00	10	1
	11	dd	dd	d

We arbitrarily chose these as our state encodings.
We could have used others.

[Figure 6.6 from the textbook]

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	y_2y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_1	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_I	Z
0	0	
0	1	
1	0	
1	1	

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s	Next state	
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1 Y_2Y_1		Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

W	y_2	y_I	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_1	Z
0	0	0
0	1	0
1	0	1
1	1	d

[Figure 6.6 from the textbook]

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s		
state	w = 0	Output	
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_1	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next state		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_1	Y_2	Y_I
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_1	z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next state		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1 Y_2Y_1		Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next state		
state	w = 0	Output	
y_2y_1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

W	y_2	y_I	Y_2	Y_I
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_2	y_1	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next state		
state	w = 0 $w = 1$		Output
y_2y_1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next state		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_1	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

[Figure 6.6 from the textbook]

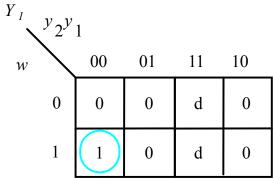
$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$
--

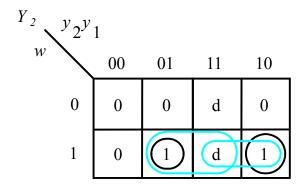
Present	Next state		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

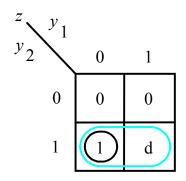
w	y_2	y_1	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

Note that the textbook draws these K-Maps differently from all previous K-maps (the least significant bits index the columns, instead of the most significant bits).





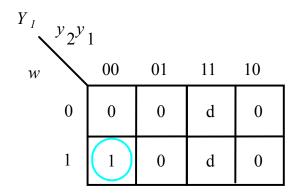


$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

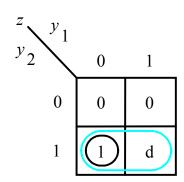
W	y_2	y_I	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

Don't care conditions simplify the combinatorial logic



 Y_{2} $y_{2}y_{1}$ $00 \quad 01 \quad 11 \quad 10$ $0 \quad 0 \quad d \quad 0$ $1 \quad 0 \quad 1 \quad d \quad 1$



Ignoring don't cares

$$Y_1 = w\overline{y}_1\overline{y}_2$$

$$Y_2 = wy_1 \overline{y}_2 + \overline{w}y_1 y_2$$

$$z = \overline{y}_1 y_2$$

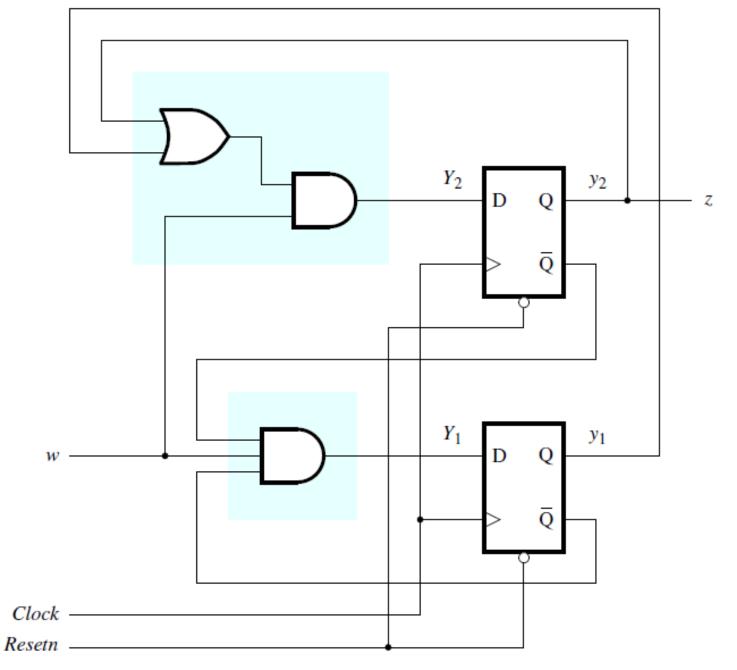
Using don't cares

$$Y_1 = w\overline{y_1}\overline{y_2}$$

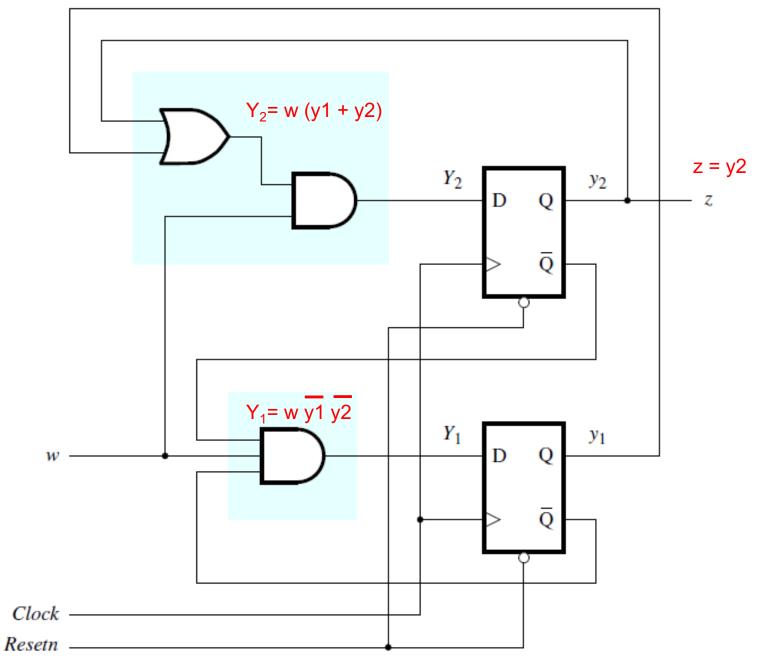
$$Y_2 = wy_1 + wy_2$$
$$= w(y_1 + y_2)$$

$$z = y_2$$

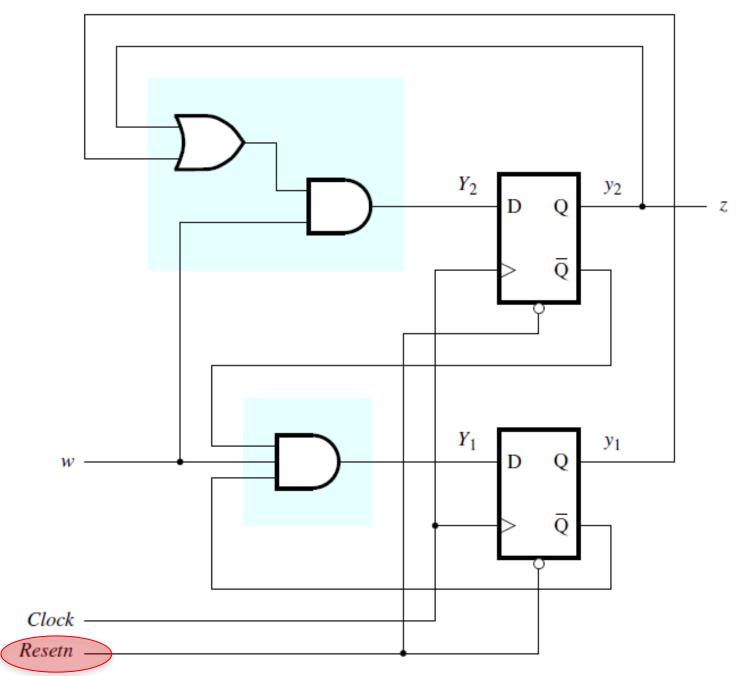
[Figure 6.7 from the textbook]



[Figure 6.8 from the textbook]

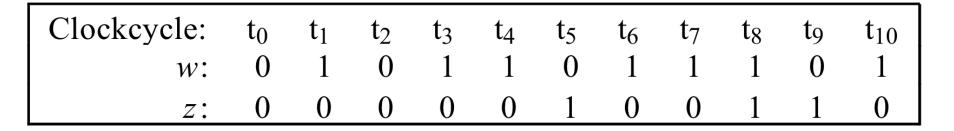


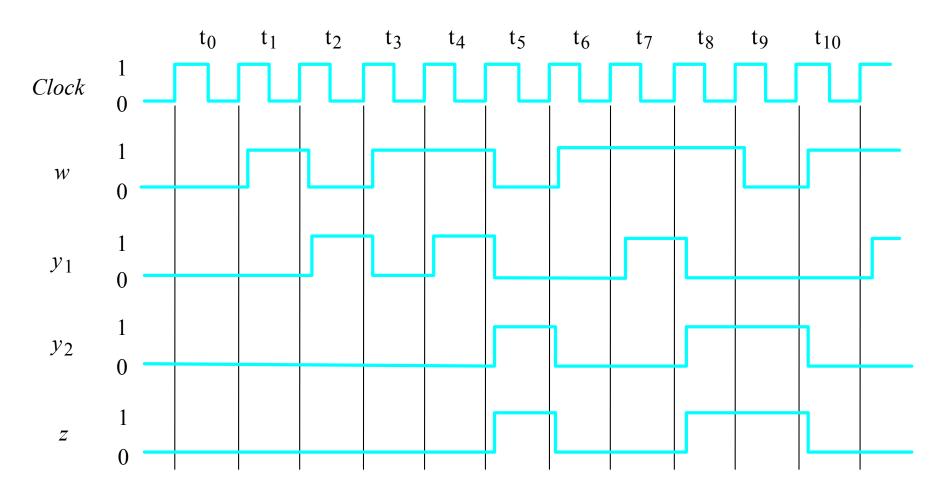
[Figure 6.8 from the textbook]



Lastly, we add a reset signal, which forces the machine back to its start state, which is state 00 in this case.

[Figure 6.8 from the textbook]





[Figure 6.9 from the textbook]

Summary: Designing a Moore Machine

- Obtain the circuit specification.
- Derive a state diagram.
- Derive the state table.
- Decide on a state encoding.
- Encode the state table.
- Derive the output logic and next-state logic.
- Add a reset signal.

Questions?

THE END