

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Simple Processor

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Digital System

Datapath circuit

- To store data
- To manipulate data
- To transfer data from one part of the system to another
- Comprise building blocks such as registers, shift registers, counters, multipliers, decoders, encoders, adders, etc.

Control circuit

- Controls the operation of the datapath circuit
- Designed as a FSM

[Figure 7.9 from the textbook]

A Closer Look at the Registers

Registers R0, R1, R2 and R3 Pata are accessible to the programmer Clock R3R0 $R0_{out}$ $R3_{in}$ $R0_{in}$ AddSub Extern Control circuit Function

Done

4-Bit Register

Keeping Data into the Register

Keeping Data into the Register

Keeping Data into the Register

A Closer Look at the Data Bus

Bus Structure

 We need a way to transfer data from any register (device) to any other register (device)

A bus is simply a set of n wires to transfer n-bit data

What if two registers write to the bus at the same time?

One way to implement a data bus is to use multiplexers

One way to implement a data bus is to use multiplexers

This requires one multiplexer per bit.
Assuming there are four 4-bit registers, we need four 5-to-1 multiplexers.

One way to implement a data bus is to use multiplexers

A Closer Look at the Tri-State Driver

Tri-state driver (see Appendix B for more details)

(b) Equivalent circuit

Z: High impedance state

e	W	f
0	0	Z
0	1	Z
1	0	0
1	1	1
		l

(c) Truth table

Tri-state driver

(see Appendix B for more details)

- Alternative way to implement a data bus
- Allows several devices to be connected to a single wire (this is not possible with regular logic gates because their outputs are always active; an OR gate is needed)
- Note that at any time, at most one of e0, e1, e2, and e3 can be set to 1

An n-bit Tri-State Driver can be constructed using n 1-bit tri-state buffers

2-Bit Register

How to connect two 2-bit registers to a bus (using tri-state drivers)

This shows only two 2-bit registers, but this design scales to more and larger registers.

Register 1 stores the number $2_{10} = 10_2$ Register 2 stores the number $1_{10} = 01_2$

Initially all control inputs are set to 0 (no reading or writing allowed).

R1_{out} is set to 1 (this enables reading from register 1).

The bits of R1 are now on the data bus (2-bit data bus in this case).

R2_{in} is set to 1 (this enables writing to register 2).

The bits of R1 are still on the bus and they propagate to the multiplexers...

... and on the next positive clock edge to the outputs of the flip-flops of R2.

After the copy is complete R1_{out} and R2_{in} are set to 0.

All control inputs are now disabled (no reading or writing is allowed).

Register 2 now holds the same value as register 1.

Another Example

Initially all control inputs are set to 0 (no reading or writing allowed).

The number $3_{10}=11_2$ is placed on the 2-bit data bus.

R2_{in} is set to 1 (this enables writing to register 2).

The bits of the data propagate the the multiplexers...

... and on the next positive clock edge to the outputs of the flip-flops of R2.

After the loading is complete R2_{in} is set to 0.

Register 2 now stores the number $3_{10}=11_2$.

A Closer Look at the Arithmetic Logic Unit (ALU)

4-Bit Register

Adder/Subtractor unit

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

Adder/subtractor unit

 Subtraction can be performed by simply adding the 2's complement of the second number, regardless of the signs of the two numbers.

 Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

XOR Tricks

control	y	out
0	0	0
0	1	1
1	0	1
1	1	0

XOR as a repeater

control	y	out
0	0	0
0	1	1
1	0	1
1	1	0

XOR as an inverter

control	у	out
0	0	0
0	1	1
1	0	1
1	1	0

Addition: when control = 0

Addition: when control = 0

Addition: when control = 0

Subtraction: when control = 1

A Closer Look at the Control Circuit

[Figure 7.9 from the textbook]

Design a FSM with input w and outputs

• **R0**_{in}

• A_{in}

AddSub

• R0_{out}

Extern

• **R1**_{in}

• Gin

• R1_{out}

• G_{out}

Done

• **R2**_{in}

Clear

• R2_{out}

• **R3**_{in}

• FR_{in}

• R3_{out}

Design a FSM with input w and outputs

• **R0**_{in}

• A_{in}

- AddSub
- X₀ • T₀

• T₁

• R0_{out}

Extern

• X₁

• **R1**_{in}

• Gin

• X₂ • T₂

• R1_{out}

• G_{out}

Done

• X₃ • T₃

• **R2**_{in}

Clear

• R2_{out}

• Y₀ • I₀

• Y₁ • I₁

• **R3**_{in}

• FR_{in}

• Y₂

• R3_{out}

• Y₃

These are helper outputs that are one-hot encoded. They are used to simplify the expressions for the other outputs.

Operation		Fun	ction Performed
Load Rx,	Data	Rx	← Data
Move Rx,	Ry	Rx	← [Ry]
Add Rx,	Ry	Rx	← [Rx] + [Ry]
Sub Rx,	Ry	Rx	← [Rx] - [Ry]

Operation		Fur	nction Performed	
Load	Rx,	Data	Rx	← Data
Move	Rx,	Ry	Rx	← [Ry]
Add	Rx,	Ry	Rx	← [Rx] + [Ry]
Sub	Rx,	Ry	Rx	← [Rx] - [Ry]

Where Rx and Ry can be one of four possible options: R0, R1, R2, and R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Similar Encoding is Used by Modern Chips

MIPS32 Add Immediate Instruction

001000	00001	00010	000000101011110
OP Code	Addr 1	Addr 2	Immediate value

Equivalent mnemonic: addi \$r1, \$r2, 350

Sample Assembly Language Program For This Processor

Move R3, R0

Add R1, R3

Sub R0, R2

Load R2, Data

Machine Language	Assemb	ly Language	Meaning	/ Interpretat	ion
011100	Move	R3, R0	R3 ←	[R0]	
100111	Add	R1, R3	R1 ←	[R1] +	[R3]
110010	Sub	R0, R2	R0 ←	[R0] -	[R2]
001000	Load	R2, Data	R2 ←	Data	

Machine Language	Assembly Language		Meaning / Interpretation
011100	Move	R3, R0	R3 ← [R0]
100111	Add	R1, R3	R1 ([R1] + [R3]
110010	Sub	R0, R2	R0 ← [R0] - [R2]
001000	Load	R2, Data	R2 ← Data

Machine Language	Assembly Language	Meaning / Interpretation
011100	Move R3, R0	R3 ← [R0]
100111	Add R1, R3	R1 ([R1] + [R3]
110010	Sub R0, R2	R0 ← [R0] - [R2]
001000	Load R2, Data	R2 🗲 Data

For short, each line can be expressed as a hexadecimal number

Machine Language	Assemb	oly Language	Meaning / Interpretation
1C	Move	R3, R0	R3 ← [R0]
27	Add	R1, R3	R1 ([R1] + [R3]
32	Sub	R0, R2	R0 ← [R0] - [R2]
08	Load	R2, Data	R2 ← Data

```
; memcpy(dst, src, len)
Intel 8086
                     ; Copy a block of memory from one location to another.
                     ; Entry stack parameters
                            [BP+6] = len, Number of bytes to copy
                            [BP+4] = src, Address of source data block
                            [BP+2] = dst, Address of target data block
                     ; Return registers
                            AX = Zero
 0000:1000
                                         1000h ; Start at 0000:1000h
                                 org
 0000:1000
                                 proc
                     memcpy
 0000:1000 55
                                                    ; Set up the call frame
                                 push
                                         bp
                                         bp,sp
 00000:1001 89 E5
                                 mov
 0000:1003 06
                                                  ; Save ES
                                 push
                                         es
                                         cx,[bp+6]; Set CX = len
 0000:1004 8B 4E 06
                                 mov
                                         done ; If len=0, return
 0000:1007 E3 11
                                 jcxz
                                         si,[bp+4] ; Set SI = src
 0000:1009 8B 76 04
                                 mov
 0000:100C 8B 7E 02
                                         di,[bp+2] ; Set DI = dst
                                 mov
0000:100F 1E
                                 push
                                         ds
                                                    : Set ES = DS
 0000:1010 07
                                 pop
                                         es
 0000:1011 8A 04
                     loop
                                         al,[si] ; Load AL from [src]
                                 mov
                                         [di],al ; Store AL to [dst]
 0000:1013 88 05
                                 mov
                                         si
                                                     ; Increment src
 0000:1015 46
                                 inc
 0000:1016 47
                                 inc
                                         di
                                                    : Increment dst
0000:1017 49
                                 dec
                                                     ; Decrement len
                                         CX
                                                     ; Repeat the loop
 0000:1018 75 F7
                                         loop
                                 jnz
0000:101A 07
                     done
                                         es
                                                    : Restore ES
                                 pop
                                                    ; Restore previous call frame
0000:101B 5D
                                 pop
                                         bp
 0000:101C 29 C0
                                 sub
                                         ax,ax
                                                     : Set AX = 0
0000:101E C3
                                 ret
                                                     ; Return
0000:101F
                                 end proc
                                                                  [http://en.wikipedia.org/wiki/Intel_8086]
```

```
; memcpy(dst, src, len)
 Intel 8086
                      ; Copy a block of memory from one location to another.
                      ; Entry stack parameters
                            [BP+6] = len, Number of bytes to copy
                            [BP+4] = src, Address of source data block
                            [BP+2] = dst, Address of target data block
Memory Address
                      ; Return registers
                            AX = Zero
  0000:1000
                                        1000h ; Start at 0000:1000h
                                 org
  0000:1000
                                 proc
                      memcpy
  0000:1000 55
                                 push
                                                    ; Set up the call frame
                                         bp
  0000:1001 89 E5
                                         bp,sp
                                 mov
  0000:1003 06
                                              ; Save ES
                                 push
                                         es
                                         cx,[bp+6] ; Set CX = len
  0000:1004 8B 4E 06
                                 mov
                                         done ; If len=0, return
  0000:1007 E3 11
                                 jcxz
  0000:1009 8B 76 04
                                        si,[bp+4] ; Set SI = src
                                 mov
  0000:100C 8B 7E 02
                                         di,[bp+2] ; Set DI = dst
                                 mov
  0000:100F 1E
                                 push
                                         ds
                                                    : Set ES = DS
  0000:1010 07
                                 pop
                                         es
  0000:1011 8A 04
                      loop
                                         al,[si]  ; Load AL from [src]
                                 mov
  0000:1013 88 05
                                        [di],al ; Store AL to [dst]
                                 mov
                                         si
  0000:1015 46
                                                    ; Increment src
                                  inc
  0000:1016 47
                                         di
                                                    : Increment dst
                                  inc
  0000:1017 49
                                  dec
                                                    ; Decrement len
                                         CX
                                         loop
  0000:1018 75 F7
                                                     ; Repeat the loop
                                  jnz
  0000:101A 07
                      done
                                         es
                                                    : Restore ES
                                 pop
  0000:101B 5D
                                                    ; Restore previous call frame
                                 pop
                                         bp
  0000:101C 29 CO
                                  sub
                                         ax,ax
                                                     : Set AX = 0
  0000:101E C3
                                  ret
                                                     ; Return
  0000:101F
                                 end proc
                                                                 [http://en.wikipedia.org/wiki/Intel 8086]
```

```
; memcpy(dst, src, len)
Intel 8086
                     ; Copy a block of memory from one location to another.
                      Entry stack parameters
                           [BP+6] = len, Number of bytes to copy
                            [BP+4] = src, Address of source data block
                            [BP+2] = dst, Address of target data block
          Machine
                     ; Return registers
          Language
                            AX = Zero
 0000:1000
                                        1000h : Start at 0000:1000h
                                 org
 0000:1000
                                 proc
                      memcpy
 0000:1000 55
                                push
                                                   ; Set up the call frame
                                        bp
 0000:1001 89 E5
                                        bp,sp
                                 mov
 0000:1003 06
                                                 ; Save ES
                                 push
                                         es
0000:1004 8B 4E 06
                                        cx,[bp+6]; Set CX = len
                                 mov
 0000:1007 E3 11
                                        done ; If len=0, return
                                 jcxz
0000:1009 8B 76 04
                                       si,[bp+4] ; Set SI = src
                                 mov
0000:100C 8B 7E 02
                                        di,[bp+2] ; Set DI = dst
                                 mov
0000:100F 1E
                                 push
                                        ds
                                                    : Set ES = DS
 0000:1010 07
                                 pop
                                         es
 0000:1011 8A 04
                     loop
                                        al,[si] ; Load AL from [src]
                                 mov
 0000:1013 88 05
                                       [di],al ; Store AL to [dst]
                                 mov
 0000:1015 46
                                         si
                                                    ; Increment src
                                 inc
 0000:1016 47
                                         di
                                                    : Increment dst
                                 inc
 0000:1017 49
                                 dec
                                                    ; Decrement len
                                         CX
                                         loop
 0000:1018 75 F7
                                                    ; Repeat the loop
                                 jnz
0000:101A 07
                     done
                                         es
                                                    : Restore ES
                                 pop
 0000:101B 5D
                                                    ; Restore previous call frame
                                 pop
                                         bp
0000:101C 29 C0
                                 sub
                                         ax,ax
                                                    : Set AX = 0
0000:101E C3
                                 ret
                                                     : Return
 0000:101F
                                 end proc
                                                                 [http://en.wikipedia.org/wiki/Intel 8086]
```

```
; memcpy(dst, src, len)
Intel 8086
                       ; Copy a block of memory from one location to another.
                        Entry stack parameters
                              [BP+6] = len, Number of bytes to copy
                              [BP+4] = src, Address of source data block
                              [BP+2] = dst, Address of target data block
                                           Assembly
                       ; Return registers
                                           Language
                              AX = Zero
 0000:1000
                                           1000h
                                                        : Start at 0000:1000h
                                   org
 0000:1000
                                   proc
                       memcpy
                                                        ; Set up the call frame
 0000:1000 55
                                   push
                                           bp
 0000:1001 89 E5
                                           bp,sp
                                   mov
 0000:1003 06
                                                        ; Save ES
                                   push
                                           es
                                           cx,[bp+6]
 0000:1004 8B 4E 06
                                                        : Set CX = len
                                   mov
 00000:1007 E3 11
                                           done
                                                        ; If len=0, return
                                   jcxz
                                           si,[bp+4]
 0000:1009 8B 76 04
                                                        ; Set SI = src
                                   mov
                                           di,[bp+2]
 0000:100C 8B 7E 02
                                                        : Set DI = dst
                                   mov
 0000:100F 1E
                                   push
                                           ds
                                                        : Set ES = DS
 0000:1010 07
                                   pop
                                           es
 0000:1011 8A 04
                      loop
                                           al,[si]
                                                        ; Load AL from [src]
                                   mov
                                           [di],al
                                                        ; Store AL to [dst]
 0000:1013 88 05
                                   mov
                                           si
 0000:1015 46
                                   inc
                                                        : Increment src
                                           di
                                                        : Increment dst
 0000:1016 47
                                   inc
 0000:1017 49
                                   dec
                                                        : Decrement len
                                           CX
                                                        ; Repeat the loop
 0000:1018 75 F7
                                           loop
                                   jnz
 0000:101A 07
                      done
                                           es
                                                        : Restore ES
                                   pop
                                                        ; Restore previous call frame
 00000:101B 5D
                                   pop
                                           bp
 0000:101C 29 C0
                                   sub
                                           ax,ax
                                                        : Set AX = 0
 0000:101E C3
                                   ret
                                                        : Return
 0000:101F
                                   end proc
                                                                     [http://en.wikipedia.org/wiki/Intel 8086]
```

```
; memcpy(dst, src, len)
Intel 8086
                      ; Copy a block of memory from one location to another.
                        Entry stack parameters
                             [BP+6] = len, Number of bytes to copy
                             [BP+4] = src, Address of source data block
                             [BP+2] = dst, Address of target data block
                      ; Return registers
                                                                Comments
                             AX = Zero
                                                       : Start at 0000:1000h
 0000:1000
                                          1000h
                                  org
 0000:1000
                                  proc
                      memcpy
 0000:1000 55
                                                       ; Set up the call frame
                                  push
                                          bp
 0000:1001 89 E5
                                          bp,sp
                                  mov
 0000:1003 06
                                                       ; Save ES
                                  push
                                          es
                                          cx,[bp+6]
 0000:1004 8B 4E 06
                                                       : Set CX = len
                                  mov
 0000:1007 E3 11
                                                      ; If len=0, return
                                  jcxz
                                          done
                                          si,[bp+4]
                                                       ; Set SI = src
 0000:1009 8B 76 04
                                  mov
 0000:100C 8B 7E 02
                                          di,[bp+2]
                                                       ; Set DI = dst
                                  mov
 0000:100F 1E
                                  push
                                          ds
                                                       : Set ES = DS
 0000:1010 07
                                  pop
                                           es
 0000:1011 8A 04
                      loop
                                          al,[si]
                                                       ; Load AL from [src]
                                  mov
                                          [di],al
                                                       ; Store AL to [dst]
 0000:1013 88 05
                                  mov
                                           si
 0000:1015 46
                                  inc
                                                       : Increment src
                                          di
                                                       : Increment dst
 0000:1016 47
                                  inc
 0000:1017 49
                                  dec
                                                       ; Decrement len
                                          CX
                                                       ; Repeat the loop
 0000:1018 75 F7
                                          loop
                                  jnz
 0000:101A 07
                      done
                                           es
                                                       : Restore ES
                                  pop
                                                       ; Restore previous call frame
 0000:101B 5D
                                  pop
                                          bp
 0000:101C 29 CO
                                  sub
                                           ax,ax
                                                       : Set AX = 0
 0000:101E C3
                                  ret
                                                       : Return
 0000:101F
                                  end proc
```

[http://en.wikipedia.drg/wiki/Intel 8086]

Another Part of The Control Circuit

A part of the control circuit for the processor

What are the components?

2-Bit Up-Counter

2-bit Synchronous Up-Counter

2-bit Synchronous Up-Counter with Enable

2-to-4 Decoder with Enable Input

2-to-4 Decoder with an Enable Input

2-to-4 Decoder with an Enable Input

(always enabled in this example)

Meaning/Explanation

- This is like a FSM that cycles through its four states one after another.
- But it also can be reset to go to state 0 at any time.
- The implementation uses a counter followed by a decoder. The outputs of the decoder are one-hotencoded.
- This is like choosing a state assignment for an FSM in which there is one Flip-Flop per state, i.e., one-hot encoding (see Section 6.2.1 in the textbook)

Deriving the Control Signals

Design a FSM with input w and outputs

• **R0**_{in}

• A_{in}

- AddSub
- T₀ X₀

R0_{out}

Extern

• X₁

R1_{in}

• Gin

• T₂ • X₂

R1_{out}

• G_{out}

Done

• T₃

• T₁

• X₃

• **R2**_{in}

Clear

R2_{out}

 $\cdot I_0 \qquad \cdot Y_0$

2_{out}

• I₁ • Y₁ • Y₂

• R3_{in}

• FR_{in}

- I₂
- Y₃

R3_{out}

These are helper outputs that are one-hot encoded. They are used to simplify the expressions for the other outputs.

Another Control Signal

Yet Another Control Signal

Expressing the 'FR_{in}' signal

$$FR_{in} = w T_0$$

Load a new operation into the function register

Expressing the 'Clear' signal

Clear = $\overline{\mathbf{w}} \, \mathsf{T}_0 + \mathsf{Done}$

Reset the counter when Done or when w=0 and no operation is being executed (i.e., $T_0=1$).

Control signals asserted in each time step

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	R _{in} = X R _{out} = Y Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	R _{out} = Y G _{in} AddSub = 1	G _{out} R _{in} = X Done

Control signals asserted in each time step

These are the outputs of the first 2-to-4 decoder that is connected to the two most significant bits of the function register. They are one-hot encoded so only one of them is active at any given time (see Fig 7.11).

The I_0 , I_1 , I_2 , I_3 and T_0 , T_1 , T_2 , T_3 Signals

Different Operations Take Different Amount of Time

	T ₁	T_2	T ₃	_
(Load): I ₀	Extern R _{in} = X Done			1 clock cycle
(Move): I ₁	R _{in} = X R _{out} = Y Done			1 clock cycle
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done	3 clock cycles
(Sub): I ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done	3 clock cycles

Operations performed by this processor

Operation		Function Performed		
Load	Rx,	Data	Rx	← Data
Move	Rx,	Ry	Rx	← [Ry]
Add	Rx,	Ry	Rx	← [Rx] + [Ry]
Sub	Rx,	Ry	Rx	← [Rx] - [Ry]

Where Rx and Ry can be one of four possible options: R0, R1, R2, and R3

[Figure 7.9 from the textbook]

Expressing the 'Extern' signal

		T ₁	T_2	T ₃
(Load):	I_0	Extern R _{in} = X		
		Done		
(Move):	I ₁	R _{in} = X R _{out} = Y Done		
(Add):	I_2	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub):	l ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

Extern = $I_0 T_1$

Expressing the 'Done' signal

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X		
	Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$		
	Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in}	G _{out} R _{in} = X
	∽ in	AddSub = 0	Done
(Sub): I ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$	G _{out}
	∽ in	G _{in} AddSub = 1	R _{in} = X Done

Done =
$$(I_0 + I_1)T_1 + (I_2 + I_3)T_3$$

Expressing the 'A_{in}' signal

		T ₁	T_2	T ₃
(Load): I	I _o	Extern R _{in} = X Done		
(Move): I	I ₁	R _{in} = X R _{out} = Y Done		
(Add): I	l ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I	l ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

$$A_{in} = (I_2 + I_3)T_1$$

Expressing the 'G_{in}' signal

	T ₁	T_2	T ₃
(Load): I	Extern R _{in} = X Done		
(Move): I	R _{in} = X R _{out} = Y Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): l ₍	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

$$G_{in} = (I_2 + I_3)T_2$$

Expressing the 'Gout' signal

	T ₁	T_2	T_3
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G_{out} $R_{in} = X$ Done
(Sub): I ₃	$R_{out} = X$ A_{in}	R _{out} = Y G _{in} AddSub = 1	G_{out} $R_{in} = X$ Done

$$G_{out} = (I_2 + I_3)T_3$$

Expressing the 'AddSub' signal

		T ₁	T_2	T ₃
(Load): I	l _o	Extern R _{in} = X Done		
(Move): I	l ₁	R _{in} = X R _{out} = Y Done		
(Add): I	l ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I	l ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

AddSub = I_3

Expressing the 'R0_{in}' signal

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} ∓ X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	R _{out} = Y G _{in} AddSub = 1	G _{out} R _{in} ∓ X Done

$$R0_{in} = (I_0 + I_1)T_1X_0 + (I_2 + I_3)T_3X_0$$

Expressing the 'R1_{in}' signal

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} ∓ X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	R _{out} = Y G _{in} AddSub = 1	G _{out} R _{in} ∓ X Done

$$R_{in}^1 = (I_0 + I_1)T_1X_1 + (I_2 + I_3)T_3X_1$$

Expressing the 'R2_{in}' signal

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} ∓ X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	R _{out} = Y G _{in} AddSub = 1	G _{out} R _{in} ∓ X Done

$$R2_{in} = (I_0 + I_1)T_1X_2 + (I_2 + I_3)T_3X_2$$

Expressing the 'R3_{in}' signal

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} ∓ X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	R _{out} = Y G _{in} AddSub = 1	G _{out} R _{in} ∓ X Done

$$R_{in}^3 = (I_0 + I_1)T_1X_3 + (I_2 + I_3)T_3X_3$$

Expressing the 'R0_{out}' signal

	T ₁	T_2	T_3
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

$$R0_{out} = I_1T_1Y_0 + (I_2 + I_3) (T_1X_0 + T_2Y_0)$$

Expressing the 'R1_{out}' signal

	T ₁	T_2	T_3
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

$$R_{out}^1 = I_1 T_1 Y_1 + (I_2 + I_3) (T_1 X_1 + T_2 Y_1)$$

Expressing the 'R2_{out}' signal

	T_1	T_2	T ₃
(Load): I	Extern R _{in} = X Done		
(Move): I	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$ \begin{array}{c c} R_{\text{out}} = X \\ A_{\text{in}} \end{array} $	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I	$ \frac{R_{\text{out}}}{A_{\text{in}}} = X $	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

$$R_{out}^2 = I_1 T_1 Y_2 + (I_2 + I_3) (T_1 X_2 + T_2 Y_2)$$

Expressing the 'R3_{out}' signal

	T ₁	T_2	T_3
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

$$R3_{out} = I_1T_1Y_3 + (I_2 + I_3) (T_1X_3 + T_2Y_3)$$

Derivation of the Control Inputs

 For more insights into these derivations see pages 434 and 435 in the textbook

Some Additional Topics

The ALU for the Simple Processor

Another Arithmetic Logic Unit (ALU)

- Arithmetic Logic Unit (ALU) computes arithmetic or logic functions
- Example: A four-function ALU has two selection bits S1 S0 (also called OpCode) to specify the function
 - 00 (ADD), 01 (SUB), 10 (AND), 11 (OR)
- Then the following set up will work

S1	S0	Function
0	0	ADD
0	1	SUB
1	0	AND
1	1	OR

An Alternative Design of Four-Function ALU

- The previous design is not very efficient as it uses an adder and a subtractor circuit
- We can design an add/subtract unit as discussed earlier
- Then we can design a logical unit (AND and OR) separately
- Then select appropriate output as result
- What are the control signals, Add/Sub, Select0, and Select1?

S 1	S0	Function
0	0	ADD
0	1	SUB
1	0	AND
1	1	OR

Examples of Some Famous Microprocessors

Intel's 4004 Chip

Technical specifications

- Maximum clock speed was 740 kHz
- Instruction cycle time: 10.8 µs
 (8 clock cycles / instruction cycle)
- Instruction execution time 1 or 2 instruction cycles (10.8 or 21.6 μ s), 46300 to 92600 instructions per second
- Built using 2,300 transistors

Technical specifications

- Separate program and data storage.
- The 4004, with its need to keep pin count down, used a single multiplexed 4-bit bus for transferring:
 - 12-bit addresses
 - 8-bit instructions
 - 4-bit data words
- Instruction set contained 46 instructions (of which 41 were 8 bits wide and 5 were 16 bits wide)
- Register set contained 16 registers of 4 bits each
- Internal subroutine stack, 3 levels deep.

Intel 4004 registers $^{1}_{1}\ ^{1}_{0}\ ^{0}_{9}\ ^{0}_{8}\ ^{0}_{7}\ ^{0}_{6}\ ^{0}_{5}\ ^{0}_{4}\ ^{0}_{3}\ ^{0}_{2}\ ^{0}_{1}\ ^{0}_{0}\ \textit{(bit position)}$ Main registers **Accumulator** Α R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 **R14 R15 Program counter** PC Program Counter Push-down address call stack PC1 Call level 1 PC2 Call level 2 PC3 Call level 3 Status register C P Z S Flags

Intel's 8086 Chip

		Intel 8086 r	egisters	
1, 1, 1, 1,	1 ₅ 1 ₄ 1 ₃ 1 ₂ 1 ₁ 1 ₀ 0 ₉ 0 ₈		•	(bit position)
Main regis		, , , , ,	0 2 1 0	(an position)
	AH	AL		AX (primary accumulator)
	ВН	BL		BX (base, accumulator)
	СН	CL		CX (counter, accumulator)
	DH	DL		DX (accumulator, other functions)
Index regi	sters			
0000		SI		Source Index
0000	1	DI		Destination Index
0000	E	3P		Base Pointer
0000		SP		Stack Pointer
Program o	counter			
0000		IP		Instruction Pointer
Segment r	egisters			
	CS		0000	Code Segment
	DS		0000	Data Segment
	ES		0000	ExtraSegment
	SS		0000	Stack Segment
Status reg				
	O D I T	SZ-A	- P - C	Flags [http://en.wikipedia.org/w

[http://en.wikipedia.org/wiki/Intel_8086]

Simplified block diagram of Intel 8088 (a variant of 8086);

1=main registers;

10

2=segment registers and IP;

3=address adder;

4=internal address bus;

5=instruction queue;

6=control unit (very simplified!);

7=bus interface;

8=internal databus;

10/11/12=external address/ data/control bus.

Questions?

THE END