Cpre 281 HW03
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY

P1 (5 points): Draw the truth table for the following circuit.

P2 (11 points): Given the expression $F(a, b, c)=\sum m(1,5,6,7)$:
I: Use Boolean Algebra to reduce this expression to a simplified SOP expression (show all steps).
II: Draw the circuit for F using only NAND gates. Your circuit should not use more than four NAND gates to produce F.

P3 (11 points): Given the expression $G\left(x_{2}, x_{1}, x_{0}\right)=\prod M(1,2,3,7)$, draw the circuit for G using only NOR gates. Your circuit should not use more than six NOR gates to replicate the output of G.

P4 (12 points): Implement a NOT gate using:
A: One 2-input NAND gate. The two inputs of the NAND gate cannot both be connected to the input signal.
B: One 2-input NOR gate. Again, the two inputs cannot be connected to the same input signal.
C: One 2-input XOR gate.
D: One 3-input XOR gate.
Note: all logic gates can be connected to receive logical values 0 ("GND" or "0") or 1 ("VCC" or " 1 ") as one of their inputs.

P5 (16 points): We want to convert the circuit shown below into a small number of NAND gates.
A: Write the expression for H, then use Boolean algebra to produce a simplified SOP expression for H .
B: Write the shorthand expression for H .
C : Derive a circuit for H that uses exactly nine NAND gates and no other gates.

P6 (20 points): You have been tasked to produce a circuit that takes three inputs and creates two outputs Y_{1} and Y_{0}. Of the three inputs, one (W) is produced by the output of a button, while the two others (X_{1} and X_{0}) are produced from "sophisticated hardware". You need to provide circuitry that produces output reflected in the truth table shown below.

W	X_{1}	X_{0}	Y_{1}	Y_{0}
0	0	0	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	1

A: Derive simplified SOP expressions for both Y_{1} and Y_{0}.
B: Using only NOT, AND, and OR gates, create the circuit for your expressions in A.
C: Implement the circuit in A using only NAND gates.

P7 (20 points): A Full Adder is a circuit that adds three bits (X, Y, and Z) together and returns two bits (C and S) to represent the total as a 2-bit binary number, where C is the most significant bit (MSB) and S is the least significant bit (LSB). For example, let $\mathrm{X}=1, \mathrm{Y}=0$, and $\mathrm{Z}=1$. Here, the total should be $2_{10}=10_{2}$, and the outputs are, correspondingly, $\mathrm{C}=1$ and $\mathrm{S}=0$.
A: Derive the truth tables for C and S .
B : Write the functions C and S in shorthand notation using minterms.
C: Repeat part B but use maxterms instead.
D: Obtain the simplest SOP expressions for the functions C and S and draw a circuit which implements the Full Adder.

P8 (5 points): Convert the following circuit into a circuit that uses only NOR gates. You must use only a minimal number of NOR gates to implement this circuit.

