

P1 (10 points): Given the following circuit:

A: Write the SOP expression for the output f.

B: Show that the POS shorthand expression for f can be written as: $f(x_2, x_1, x_0) = \prod M(0, 2, 3, 4, 6)$

C: Assume that the inputs to the circuit (x_2, x_1, x_0) represent a three-bit integer X where (by convention) the subscript "0" (x_0) indicates the least significant bit (LSB). What is the value of f for the input X=6?

D: What decimal values of X will produce an output f=1?

P2 (9 points): Produce the simplified sum-of-products (SOP) expressions for the following K-maps:

ABC	00	01	11	10	YZ WX	00	01	11	10	YZ WX	00	01	11	10
0	0	1	1	0	00	0	1	0	0	00	1	0	0	0
1	0	1	1	0	01	0	0	0	0	01	1	0	0	0
					11	0	0	0	0	11	1	0	0	0
					10	0	1	1	1	10	0	0	0	1

P3 (12 points): Given the shorthand expression $F(a, b, c) = \prod M(0, 1, 2, 5)$: A: Use a K-Map to show that F may simplify to the product-of-sums (POS) expression $F = (a + c)(b + \overline{c})$.

B: A second expression is given as $F_2 = (a + b)(a + c)(b + \overline{c})$. Prove that these two expressions are equivalent; that is, prove that $F = F_2$.

C: What are the implications of implementing the circuit for F with the second expression $(a + b)(a + c)(b + \overline{c})$ instead of $(a + c)(b + \overline{c})$?

P4 (12 points): For each shorthand expression below, derive the simplest SOP expression:

A: $X_3(a, b, c, d) = \sum m(4, 6, 9, 12, 13, 14)$ B: $X_2(a, b, c) = \sum m(0, 1, 5, 7)$ C: $X_1(a, b, c, d) = \sum m(0, 3, 4, 7, 8, 9, 12, 15)$ **P5 (12 points):** For each expression below, derive the simplest POS expression:

A: $Y_3(P, Q, R) = \prod M(1,2,3,7)$ B: $Y_2(P, Q, R, S) = \prod M(0,2,5,7,8,10)$ C: $Y_1(P, Q, R, S) = \prod M(1,4,6,9,10)$

P6 (10 points): Given the shorthand expression $L(W, X, Y, Z) = \sum m(0,1,4,5,6,8,9,11,12,13,14,15)$:

A: Derive the simplified SOP expression for L, L_{SOP}.

B: Derive the simplified POS expression for L, L_{POS}.

C: Which expression will produce a circuit with a lower cost: L_{POS} or L_{SOP} ? Why?

D: Is it valid to say that $L_{SOP} = L_{POS}$? Why?

P7 (15 points): Use Karnaugh Maps to convert the given expressions to <u>simplified SOP expressions</u>:

I: $Z_1(A, B, C, D) = A\overline{B}CD + \overline{A}BC\overline{D} + \overline{A}B\overline{C} + \overline{A}CD + ABD$ II: $Z_2(D, Q) = DQ + (D \bigoplus Q)$ III: $Z_3(a, b, c) = \prod M (2,3,4,6,7)$

P8 (20 points): The goal for this problem is to accept a four-bit integer X (x_3, x_2, x_1, x_0) and use the constitutent bits to derive two expressions: P₂=1 if X is a multiple of 2 (0, 2, 4...) and P₃=1 if X is a multiple of 3 (0, 3, 6...). A: Show the K-map for P₂ and the K-map for P₃ given the four input bits for X (x_3, x_2, x_1, x_0)

B: Write a shorthand SOP expression for P_2 and show that the cost of the minimal SOP circuit for P_2 is 2.

C: Write a shorthand SOP expression for P₃ and show that the cost of the minimal SOP circuit for P₃ is 45 (when implemented separately from P₂). D: Let P₆=1 if X is a multiple of 6. Show that its expression is P₆ = $\bar{x}_3\bar{x}_2\bar{x}_1\bar{x}_0 + \bar{x}_3x_2\bar{x}_1\bar{x}_0 + x_3x_2\bar{x}_1\bar{x}_0$