P1 (10 points): Given the following circuit:

A: Write the SOP expression for the output f .
B: Show that the POS shorthand expression for f can be written as: $\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{0}\right)=$ П $\mathrm{M}(0,2,3,4,6)$
C: Assume that the inputs to the circuit ($\mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{0}$) represent a three-bit integer X where (by convention) the subscript " 0 " (x_{0}) indicates the least significant bit (LSB). What is the value of f for the input $\mathrm{X}=6$?
D: What decimal values of X will produce an output $\mathrm{f}=1$?
P2 (9 points): Produce the simplified sum-of-products (SOP) expressions for the following K-maps:

	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
0	0	1	1	0
1	0	1	1	0

YZ	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
00	0	1	0	0
01	0	0	0	0
11	0	0	0	0
10	0	1	1	1

wz ${ }^{\text {YZ }}$	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
00	1	0	0	0
01	1	0	0	0
11	1	0	0	0
10	0	0	0	1

P3 (12 points): Given the shorthand expression $F(a, b, c)=\Pi M(0,1,2,5)$:
A: Use a K-Map to show that F may simplify to the product-of-sums (POS) expression $F=(a+c)(b+\bar{c})$.
B: A second expression is given as $\mathrm{F}_{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{c})(\mathrm{b}+\overline{\mathrm{c}})$. Prove that these two expressions are equivalent; that is, prove that $\mathrm{F}=\mathrm{F}_{2}$.
C : What are the implications of implementing the circuit for F with the second expression $(a+b)(a+c)(b+\bar{c})$ instead of $(a+c)(b+\bar{c})$?

P4 (12 points): For each shorthand expression below, derive the simplest SOP expression:
A: $X_{3}(a, b, c, d)=\sum m(4,6,9,12,13,14)$
B: $\mathrm{X}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(0,1,5,7)$
C: $\mathrm{X}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,3,4,7,8,9,12,15)$

Cpr E 281 HW04
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps
Assigned: Week 4
Due Date: Sep. 17, 2018

P5 (12 points): For each expression below, derive the simplest POS expression:
A: $\mathrm{Y}_{3}(P, Q, R)=\Pi \mathrm{M}(1,2,3,7)$
B: $\mathrm{Y}_{2}(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})=\Pi \mathrm{M}(0,2,5,7,8,10)$
C: $Y_{1}(P, Q, R, S)=\Pi M(1,4,6,9,10)$
P6 (10 points): Given the shorthand expression $L(W, X, Y, Z)=$ $\sum m(0,1,4,5,6,8,9,11,12,13,14,15)$:
A: Derive the simplified SOP expression for L, $\mathrm{L}_{\text {sop }}$.
B: Derive the simplified POS expression for L, $L_{\text {pos }}$.
C: Which expression will produce a circuit with a lower cost: Lpos or Lsop?
Why?
D: Is it valid to say that $\mathrm{L}_{\text {sop }}=\mathrm{L}_{\text {pos }}$? Why?
P7 (15 points): Use Karnaugh Maps to convert the given expressions to simplified SOP expressions:
I: $Z_{1}(A, B, C, D)=A \bar{B} C D+\bar{A} B C \bar{D}+\bar{A} B \bar{C}+\bar{A} C D+A B D$
II: $\mathrm{Z}_{2}(\mathrm{D}, \mathrm{Q})=\mathrm{DQ}+(\mathrm{D} \oplus \mathrm{Q})$
III: $\mathrm{Z}_{3}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\Pi \mathrm{M}(2,3,4,6,7)$
P8 (20 points): The goal for this problem is to accept a four-bit integer X ($x_{3}, x_{2}, x_{1}, x_{0}$) and use the constitutent bits to derive two expressions: $\mathrm{P}_{2}=1$ if X is a multiple of $2(0,2,4 \ldots)$ and $P_{3}=1$ if X is a multiple of $3(0,3,6 \ldots)$. A: Show the K-map for P_{2} and the K-map for P_{3} given the four input bits for $\mathrm{X}\left(x_{3}, x_{2}, x_{1}, x_{0}\right)$
B: Write a shorthand SOP expression for P_{2} and show that the cost of the minimal SOP circuit for P_{2} is 2 .
C: Write a shorthand SOP expression for P_{3} and show that the cost of the minimal SOP circuit for P_{3} is 45 (when implemented separately from P_{2}).
D : Let $P_{6}=1$ if X is a multiple of 6 . Show that its expression is $P_{6}=$ $\overline{\mathrm{x}}_{3} \overline{\mathrm{x}}_{2} \overline{\mathrm{x}}_{1} \overline{\mathrm{x}}_{0}+\overline{\mathrm{x}}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \overline{\mathrm{x}}_{0}+\mathrm{x}_{3} \mathrm{x}_{2} \overline{\mathrm{x}}_{1} \overline{\mathrm{x}}_{0}$

