P1 (9 points): Given the number $N=1010011_2$ as a 7-bit binary number expressed in 2's complement, write the following:

A: N as a decimal number.

B: N as a 7-bit binary number in Sign and Magnitude representation.

C: The absolute value of N, expressed as a 7-bit binary number in Sign and Magnitude.

D: N as a 9-bit binary number expressed in 2's complement.

E: 4N as a 9-bit binary number expressed in 2's complement.

P2 (6 points): Negate the following 2's complement numbers.

A: 0110101	B: 1111110
C: 1010100	D: 0010000
E: 1110111	F: 0000000

P3 (8 points): Using the minimum number of bits:

A: Write +18 as an unsigned binary number.

B: Write +13 as a 2's complement binary number.

C: Write -9 as a 2's complement binary number.

D: Write -7 as a 1's complement binary number.

P4 (18 points): Perform the requested mathematical operations below, which use 5-bit 2's complement operands and produce a 5-bit 2's complement result. State both the value of carryout and if there is an overflow. For all cases, the carry-in bit is zero.

/	5
	B: 00111 – 00011
	D: 01001 + 11011
	F: 10111 – 01010
	,

P5 (7 points): As previously discussed, a Half Adder takes two inputs (X and Y) and produces two outputs (C_{out} and S).

A: Show that the Half Adder is **commutative**; that is, show that swapping the inputs to the Half Adder yields the same output.

B: Write an expression for the outputs of a Half Adder if precisely one of its inputs is fixed at 0.

C: Showing that a Full Adder is commutative would require inspecting six possible permutations. We will simply state for now that the Full Adder is also commutative. Show that a Full Adder with one of its inputs fixed at 0 has the same functionality as a Half Adder.

P6 (12 points): Using only one 7-bit full-adder and NOT gates, if necessary, derive a circuit that performs the following operations on unsigned 3-bit number X. Note that the output may be assumed as unsigned, unless it is possible for the operation to produce a negative answer, in which case, the output must be correct in 2's complement: A: 3X + 1B: 8X - 21

- C: 17X + 3
- D: 17 2X

P7 (10 points): Consider the following circuit, which uses two 7-bit ripplecarry adders "Adder P" and "Adder Q", a 3-bit unsigned input A, and a 6bit unsigned output F:

A: What is the expression for outputs W and X in this circuit? Why? B: Describe P, the 7-bit output of "Adder P", algebraically, in terms of A. Note that the output of "Adder P" differs from the left addend of "Adder Q". C: Describe V, the left 7-bit input to "Adder Q", algebraically in terms of A. D: Considering that the output bits Y and Z are ignored by F, describe F algebraically in terms of A.

E: Show that the largest possible decimal value for F in this circuit is 44.

P8 (12 points): Given a 6-bit multiplication circuit, 2's complement multiplicand M, and 2's complement multiplier Q, answer the following questions:

A: What is the product of $M=001001_2$ and $Q=010010_2$?

B: What is the product of $M=111110_2$ and $Q=001011_2$?

C: What is the product of $M=111011_2$ and $Q=100001_2$?

P10 (9 points): Convert the following numbers into IEEE-754 singleprecision floating format: A: 3.234375 = 3 + 15/64 B: -133 C: 0