Cpr E 281 HW06
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY

Representation and Arithmetic
Assigned: Week 7
Due Date: Oct. 8, 2018

P1 (9 points): Given the number $\mathrm{N}=1010011_{2}$ as a 7 -bit binary number expressed in 2's complement, write the following:
A: N as a decimal number.
B: N as a 7 -bit binary number in Sign and Magnitude representation.
C: The absolute value of N , expressed as a 7 -bit binary number in Sign and Magnitude.
D: N as a 9-bit binary number expressed in 2's complement.
E: 4N as a 9-bit binary number expressed in 2's complement.
P2 (6 points): Negate the following 2's complement numbers.
A: 0110101
B: 1111110
C: 1010100
D: 0010000
E: 1110111
F: 0000000

P3 (8 points): Using the minimum number of bits:
A: Write +18 as an unsigned binary number.
B: Write +13 as a 2 's complement binary number.
C: Write -9 as a 2's complement binary number.
D: Write -7 as a 1 's complement binary number.
P4 (18 points): Perform the requested mathematical operations below, which use 5-bit 2's complement operands and produce a 5-bit 2's complement result. State both the value of carryout and if there is an overflow. For all cases, the carry-in bit is zero.
A: $00011+00111$
B: 00111-00011
C: $01100+01001$
D: $01001+11011$
E: 11100-11101
F: $10111-01010$

P5 (7 points): As previously discussed, a Half Adder takes two inputs (X and Y) and produces two outputs ($\mathrm{C}_{\text {out }}$ and S).
A: Show that the Half Adder is commutative; that is, show that swapping the inputs to the Half Adder yields the same output.
B: Write an expression for the outputs of a Half Adder if precisely one of its inputs is fixed at 0 .
C: Showing that a Full Adder is commutative would require inspecting six possible permutations. We will simply state for now that the Full Adder is also commutative. Show that a Full Adder with one of its inputs fixed at 0 has the same functionality as a Half Adder.

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 8, 2018

P6 (12 points): Using only one 7-bit full-adder and NOT gates, if necessary, derive a circuit that performs the following operations on unsigned 3 -bit number X. Note that the output may be assumed as unsigned, unless it is possible for the operation to produce a negative answer, in which case, the output must be correct in 2's complement:
A: $3 \mathrm{X}+1$
B: $8 \mathrm{X}-21$
C: $17 \mathrm{X}+3$
D: $17-2 \mathrm{X}$
P7 (10 points): Consider the following circuit, which uses two 7-bit ripplecarry adders "Adder P" and "Adder Q", a 3-bit unsigned input A, and a 6bit unsigned output F :

FFFFFF

A: What is the expression for outputs W and X in this circuit? Why?
B: Describe P, the 7 -bit output of "Adder P", algebraically, in terms of A. Note that the output of "Adder P" differs from the left addend of "Adder Q".
C: Describe V, the left 7-bit input to "Adder Q", algebraically in terms of A.
D: Considering that the output bits Y and Z are ignored by F , describe F algebraically in terms of A.
E: Show that the largest possible decimal value for F in this circuit is 44 .

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 8, 2018

P8 (12 points): Given a 6-bit multiplication circuit, 2's complement multiplicand M, and 2's complement multiplier Q , answer the following questions:
A: What is the product of $\mathrm{M}=001001_{2}$ and $\mathrm{Q}=010010_{2}$?
B : What is the product of $\mathrm{M}=111110_{2}$ and $\mathrm{Q}=001011_{2}$?
C : What is the product of $\mathrm{M}=111011_{2}$ and $\mathrm{Q}=100001_{2}$?
P9 (9 points): Convert the following 32-bit binary numbers from IEEE754 single-precision floating format into a decimal number.
A: 01000011100011001000000000000000
B: 10111110110001000000000000000000
C: 11111111100000000000000000000000
P10 (9 points): Convert the following numbers into IEEE-754 singleprecision floating format:
A: $3.234375=3+15 / 64$
B: -133
C: 0

