Combinational Circuit Building
 Blocks
 Assigned: Week 8
 Due Date: Oct. 15, 2018

P1 (10 points): Using the expression for 2-1 multiplexers and 4-1 multiplexers, show that the expression for T in the following circuit is $\mathrm{T}=(\mathrm{W}+\overline{\mathrm{X}})(\mathrm{Y}+\mathrm{Z})(\overline{\mathrm{W}}+\overline{\mathrm{Y}})$.

P2 (14 points): Given expression $L=Y \oplus(W Z) \oplus(\bar{W} X)$, perform the following:
A: Draw the truth table for L.
B: Show that L can be implemented using exactly one $16-1$ multiplexer (MUX).
C: Show that L can be implemented using exactly one 8-1 MUX and one NOT gate.
D: Show that L can be implemented using exactly one 2-1 MUX and two XOR gates by using the input W as the MUX select line.

P3 (12 points): We want to design a circuit that receives six inputs (twobit input S, which is S_{1} and S_{0}, along with four inputs A, B, C, and D) and outputs one bit R such that $R=A$ if $S=0, R=B$ if $S=1, R=C$ if $S=2$, and $R=D$ if $S=3$.
I: Design this circuit using only one 4-1 MUX and no other logic gates.
II: Design this circuit using only three 2-1 MUXes.
III: Suppose that C is discovered to be equal to D and we wish to take advantage of this equality. Implement the new circuit for R using only two 2-1 MUXes.

Combinational Circuit Building
 Blocks
 Assigned: Week 8
 Due Date: Oct. 15, 2018

P4 (10 points): We need a circuit with seven inputs and four outputs that operates in accordance with the following abbreviated truth table:

V_{1}	$\mathrm{~V}_{0}$	$\mathrm{~N}_{3}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{1}$	$\mathrm{~N}_{0}$
0	0	A	B	A	A
0	1	B	C	B	A
1	0	C	D	C	B
1	1	D	E	D	C

Show how this truth table can be implemented with just three 4-1 MUXes.
P5 (10 points): A 6-bit 2-1 MUX has a 1-bit select input S, one 6-bit data input A , one 6 -bit data input B , and one 6 -bit data output F . Otherwise, it functions like a regular 1-bit 2-1 MUX except that the data lines are 6bits wide:
A: What is the fewest number of 1-bit 2-1 MUXes that one can use to produce a 6-bit 2-1 MUX?
B: What is the fewest number of 1-bit 2-1 MUXes that one can use to produce a 1 -bit 8-1 MUX?
C: What is the fewest number of 1-bit 2-1 MUXes that one can use to produce a 6-bit 8-1 MUX?
D: What is the fewest number of 1 -bit 2-1 MUXes that one can use to produce an n -bit $\mathrm{m}-1$ MUX?

P6 (10 points): Given a large supply of 1-2 decoders (with enable), show how you can create a 2-4 decoder.

P7 (14 points): Using the specified decoder(s), implement the following:
A: One NOT gate using only one 1-2 decoder.
B: One 3-input AND gate using only two 1-2 decoders.
C: One 2 -input OR gate using only four 1-2 decoders.
D: One 2 -input NOR gate using only one 2-4 decoder.

P8 (20 points): Given $Z(a, b, c)=\sum m(2,3,4,6,7)$, implement function Z using only the following components:
A: One 3 -to- 8 decoder and one 6 -input OR gate.
B: One 3 -to- 8 decoder and one 16 -to- 4 encoder.
C: One 4-2 priority encoder.
D: One 3 -to- 8 decoder and one 8 -to- 3 binary encoder.

