Synchronous Sequential Circuits
 Assigned: Week 12
 Due Date: Nov. 12, 2018

P1 (20 points): We want to design a circuit with input W and an output Z, where Z will equal 1 if, for the last three clock cycles, W has been 1 . A: Draw a state diagram for a Moore Finite State Machine (FSM) that implements this circuit in four states, specified as follows:

S-I: 0
S-II: 0
S-III: 1

B: Complete a state table for the above state diagram with the state assignments as shown below for state variables D_{1} and D_{0}.

	$W=0$	$W=1$	Z
S-0 $: 00$			
S-I $: 01$			
S-II $: 10$			
S-III $: 11$			

C: Use K-maps to show that the output and next-state variables can be expressed as:

$$
\begin{aligned}
D_{1}^{\text {new }} & =(w)\left(D_{1}+D_{0}\right) \\
D_{0}^{\text {new }} & =(w)\left(D_{1}+\bar{D}_{0}\right) \\
z & =D_{1} D_{0}
\end{aligned}
$$

D: Let's consider if the states were encoded as:

$$
\text { S-O = 00, S-I = 01, S-II = 11, S-III = } 10
$$

Use K-maps to show that the output and next-state variables with this new encoding can be expressed as:

$$
\begin{gathered}
D_{1}^{\text {new }}=(w)\left(D_{1}+D_{0}\right) \\
D_{0}^{\text {new }}=w \bar{D}_{1} \\
z=D_{1} \bar{D}_{0}
\end{gathered}
$$

E: Draw the circuit for this FSM using only D Flip-Flops, AND gates, and one OR gate (Do not use any NOT gates).

P2 (8 points): Derive a minimal state table for a Moore FSM that acts as a three-bit parity generator. For every three bits that are observed on the input b during three consecutive clock cycles, the FSM generates the parity bit $\mathrm{p}=1$ if and only if the number of 1 s in the three-bit sequence is even. Note that the output p may only assert after a set of three bits (six, nine, twelve, etc.) have been input.

Synchronous Sequential Circuits
 Assigned: Week 12
 Due Date: Nov. 12, 2018

P3 (15 points): Let us build a Moore FSM that has a 1-bit input P and a 1-bit output Q . P will be either 1 or 0 on any particular clock cycle. $\mathrm{Q}=0$ if P has been 1 for an even number of clock cycles; $Q=1$ if P has been 1 for an odd number of clock cycles.
A: Draw the state diagram for this Moore FSM.
B: Draw the state table for this FSM.
C: Draw a state assigned table for this FSM. The state should be the same as the output: Q.
D: Draw the truth table for this FSM's next-state variable.
E: Derive the expression for the next state variable and the output Q.
F: Draw the circuit for this FSM. If done properly, the circuit you create will implement a component that you have seen before. What component have you implemented?

P4 (15 points): We want to make a Mealy FSM with an input w and an output z which detects if particular sequences has been observed.
A: Draw a state diagram for a Mealy FSM that outputs $z=1$ if the input w follows the sequence $1 \rightarrow 1 \rightarrow 0 \rightarrow 0 \rightarrow 1$. If the sequence has not been completed, then output $z=0$.
B: Draw a state diagram for a Mealy FSM that outputs $z=1$ if the input w follows either the sequence $0 \rightarrow 0 \rightarrow 1$ or the sequence $1 \rightarrow 1 \rightarrow 0$. If neither sequence has been completed, then output $z=0$.

P5 (8 points): Draw a state diagram for a Moore FSM that functions as a special modulo-4 counter with two-bit input N and two-bit output P . On each clock cycle, the value of N is added to the counter value. Both N and the counter output are expressed in 2's complement; if $\mathrm{N}=11(-1)$ and $\mathrm{P}=01$ $(+1)$, then the next output values for P should be 00 .

P6 (14 points): Design a circuit that with one bit input N and 3-bit output P that operates as follows:
When $\mathrm{N}=0$, the new value of P will be $P_{\text {new }}=2 * P_{\text {old }}$. When $\mathrm{N}=1$, the new value of P will be $P_{\text {new }}=2 * P_{\text {old }}+1$. Since P is only three bits, each operation must be modulo 8 (i.e., if $\mathrm{P}=5$, then $2 * \mathrm{P}=10$ is too large to fit into the 3 -bit value for P, so we subtract 8 from 10 to get 2 , which should be the new value for P).
A: Draw the state table for the Moore FSM that implements this circuit. Your circuit should have a state for each possible output.
B: Show the next state Boolean expressions for each state variable.
C: The circuit that you end up with for this circuit is equivalent in functionality to a circuit that we have already discussed. What circuit is this?

Cpr E 281 HW10
 ELECTRICAL AND COMPUTER engineering
 IOWA STATE UNIVERSITY

Synchronous Sequential Circuits
 Assigned: Week 12
 Due Date: Nov. 12, 2018

P7 (20 points): Look at the state diagram below. The input variables are X and Y. The state variables are S_{1} and S_{0}. The state encodings are as follows: $A=00, B=01, C=10$, and $D=11$. The output variables are Z_{2}, Z_{1}, and Z_{0}.

I: Fill in the timing diagram below given the state diagram for a circuit that implements this state diagram using Positive-Edge-Triggered D FlipFlops.

II: Fill in the state table with state assignments

	$\mathrm{X}=0, \mathrm{Y}=0$	$\mathrm{X}=0, \mathrm{Y}=1$	$\mathrm{X}=1, \mathrm{Y}=0$	$\mathrm{X}=1, \mathrm{Y}=1$	$\mathrm{Z}_{2} \mathrm{Z}_{1} \mathrm{Z}_{0}$
A					
B					
C					
D					

III: Draw the truth table and show that the next-state expressions can be expressed as follows:

$$
\begin{gathered}
S_{0}^{\text {new }}=\bar{S}_{1} \bar{S}_{0}(Y)+\bar{S}_{1} S_{0}(X \bar{Y})+S_{1} \bar{S}_{0}(X)+S_{1} S_{0}(\bar{X} \bar{Y}) \\
S_{1}^{\text {new }}=\bar{S}_{1} \bar{S}_{0}(0)+\bar{S}_{1} S_{0}(\bar{X}+Y)+S_{1} \bar{S}_{0}(X+Y)+S_{1} S_{0}(X Y+\bar{X} \bar{Y})
\end{gathered}
$$

IV: Derive expressions for the output variables Z_{2}, Z_{1}, and Z_{0} in terms of S_{1} and S_{0}.

