# Synchronous Sequential Circuits <br> Assigned: Week 15 <br> Due Date: Dec. 3, 2018 

P1 (27 points): Consider the FSM state-assigned table shown below.

| Initial <br> State | $w=0$ |  | $w=1$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Next | $z$ | Next | $z$ |
| 000 (reset) | 001 | 1 | 010 | 0 |
| 001 | 110 | 0 | 101 | 0 |
| 010 | 101 | 0 | 100 | 1 |
| 011 | 001 | 1 | 010 | 0 |
| 100 | 010 | 0 | 111 | 0 |
| 101 | 011 | 0 | 000 | 0 |
| 110 | 111 | 0 | 001 | 1 |
| 111 | 000 | 0 | 000 | 0 |

A: Show that the inputs to the JKFFs that will be used to implement this FSM will have the following expressions:

$$
\begin{gathered}
J_{2}=S_{1} \oplus S_{0}, K_{2}=S_{0}+w S_{1}+\bar{w} \overline{S_{1}} \\
J_{1}=\left(\bar{w}+\bar{S}_{0}\right)\left(w+S_{2}+S_{0}\right), K_{1}=\left(w+\bar{S}_{2}+S_{0}\right)\left(\bar{w}+S_{2}+S_{0}\right) \\
J_{0}=\left(\bar{w}+S_{2}\right)\left(w+\overline{S_{2}}+S_{1}\right), K_{0}=\left(w+\overline{S_{2}}+S_{1}\right)\left(\bar{w}+S_{2}+S_{1}\right)\left(w+S_{2}+\overline{S_{1}}\right)
\end{gathered}
$$

B: Use state minimization to draw a state diagram for an equivalent FSM that uses only four states.
C: With the new state diagram having only four states, assign the values to the states as follows:
The circuit must reset to state 00 . While p is held as 1 from the reset state 00, the circuit must enter the next three states in this order: 10, 11 , and 01.
Draw a state-assigned table for this new FSM.
D: Implement this new FSM as a circuit using only two JKFFs and three 4-1 MUXes.

P2 (25 points): The circuit shown below has two bit input W and one bit output F.


# Synchronous Sequential Circuits <br> Assigned: Week 15 <br> Due Date: Dec. 3, 2018 

A: Draw the state diagram for the FSM. Your state diagram should have four states.
B: Draw the ASM chart for the state diagram you created in part A.
C: Draw an equivalent state diagram for the FSM that has only three states (use state minimization to remove one state from the FSM).
D: Draw the ASM chart for the state diagram that you made in part C.
P3 (18 points): Given the ASM chart shown below, perform the following:


A: Draw the state diagram for this FSM.
B: Draw the circuit which implements this FSM.
C: Next, you will design a circuit that has a 2-bit input $L\left\{L_{1} L_{0}\right\}$ and a 3bit input $\mathrm{N}\left\{\mathrm{N}_{3} \mathrm{~N}_{2} \mathrm{~N}_{1}\right\}$ where the output Q is as follows. $\mathrm{Q}=\mathrm{N}_{3}$ if $\mathrm{L}=3, \mathrm{Q}=\mathrm{N}_{2}$ if $\mathrm{L}=2$, and $\mathrm{Q}=\mathrm{N}_{1}$ if $\mathrm{L}=1$. If $\mathrm{L}=0$, then Q is unchanged. Draw a circuit that implements this behavior.
D: This circuit has five inputs but only two states. Draw the ASM chart for this circuit.

P4 (10 points): Given the following table for a Mealy FSM with three states, a one-bit input W, and a two-bit output Z:

| Time | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| W | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| $\mathrm{Z}_{1}$ | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| $\mathrm{Z}_{0}$ | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |

In this table, on each column of time, the input is changed before the output $Z$ is observed. For instance, at time 1 , the output $Z$ is observed as 11 only after the input W is set to 0 . At time 2, one clock cycle after time 1 , the output $Z$ is observed as 10 only after the input W is set to 1 . A: Draw the state diagram for this FSM with three states. Label the states S0, S1, and S2, in the order in which they first appear in the above table.
B: Assign the states as follows: $\mathrm{S} 0=001, \mathrm{~S} 1=010, \mathrm{~S} 2=100$. Show the next state variable expressions and the output expressions.

## Cpr E 281 HW12 <br> ELECTRICAL AND COMPUTER <br> engineering <br> IOWA STATE UNIVERSITY

# Synchronous Sequential Circuits <br> Assigned: Week 15 <br> Due Date: Dec. 3, 2018 

P5 (20 points): This problem concerns the algorithmic state machine (ASM) chart shown below:


A: What are the inputs to this state machine?
B: What are the outputs to this state machine?
C: Draw the state diagram that represents this state machine.
D : Make state assignments as follows: $\mathrm{A}=00, \mathrm{~B}=01, \mathrm{C}=10$, and $\mathrm{D}=11$.
Derive output expressions for this ASM chart using DFFs, AND gates, OR gates, and NOT gates.
E: Show that the next state expressions can be written as:

$$
S_{1}^{\text {new }}=\left(\bar{Z}+S_{0}\right) \overline{\left(Z S_{1}\right)}, S_{0}^{\text {new }}=\left(\bar{Z}+\overline{S_{0}}\right) \overline{\left(Z S_{1}\right)}
$$

