CprE 281: Digital Logic Midterm 1: Friday Sep 21, 2018

Student Nam	Student ID Number:					
Lab Section: (circle one)	Mon 12-3(P)	Tue 11-2(U) Tue 2-5(M) Tue 2-5(Z)	Wed 8-1 Wed 11-2 Wed 6-9	1(J) Thur (W) Thur (T) Thur Thur	11-2(Q) 11-2(V) 2-5(L) 5-8(K)	Fri 11-2(G)
1. True/	False Question	s (10 x 1p eac	h = 10p)		0 0(11)	
(a) I forge	ot to write down	n my name, stu	ident ID, ar	nd lab sectio	n.	TRUE / FALSE
(b) A NO	R gat can be bu	ilt using one A	AND gate a	nd two NOT	gates.	TRUE / FALSE
(c) It is p	ossible to build	an AND gate	with a 4-to-	1 multiplex	er.	TRUE / FALSE
(d) A two	o-input AND rec	quires more tra	ansistors that	an a three-in	put OR.	TRUE / FALSE
(e) An XO	OR can be impl	emented with	a 2-to-1 mu	ltiplexer and	d one NO	T. TRUE / FALSE
(f) $\overline{\mathbf{x} + \mathbf{y}}$	$+ \mathbf{x} \mathbf{y} + \mathbf{x}$	y + x y =	1.			TRUE / FALSE
(g) XOR	$R(x, 1) = \overline{x}$					TRUE / FALSE
(h) XOF	R (XOR (x, 0), 1) = x				TRUE / FALSE
(i) A NA	ND can be impl	emented with	fewer trans	istors than a	NOR.	TRUE / FALSE
(j) Tatooi	ine, Alderaan, a	nd Jedha are a	ll planets ir	the Star W	ars univer	se. TRUE / FALSE
2. Three	-Variable K-m	ap (5p)				

Draw the K-map and derive the minimum <u>POS</u> expression for $f(a,b,c)=\sum m(0,4,7)+D(6)$.

3. Truth Tables (3 x 5p each = 15p)
(a) Draw the truth table for the Boolean function F that has the following K-Map:

(b) Prove that $(x + y) \bullet (x + \overline{y}) = x$ using truth tables.

(c) Draw the truth table for the function $f(a,b,c) = \overline{a} \ b + \overline{a} \ \overline{c} + \overline{a} \ \overline{b} \ c$.

4. Number Conversions (5 x 4p each = 20p)
(a) Convert 21910 to binary

(b) Convert **11014** to decimal

(c) Find the values of the digits x and y in the equation: $XY_5 = 1101_2$

(d) Convert 8513049 to ternary (base 3)

(e) Compute the following sums where all numbers are in base 5:

$$+ \frac{43}{4} + \frac{142}{13}$$

5. Minimization (2 x 5p each = 10p) Consider the Boolean function $f(X, Y, Z) = \overline{((\overline{(Z + Z)} + Y) + X) + (X + Y)}$

(a) Draw the circuit diagram for this expression using <u>only NOR</u> gates.

(b) Use the theorems of Boolean algebra to simplify the expression from part (a).

6. Venn Diagrams (3 x 5p each = 15p)

 $\begin{array}{c} \hline x & \hline y \\ \hline z \\ \hline (A) \\ A = \\ \end{array} \begin{array}{c} \hline x & \hline y \\ \hline z \\ B \\ \end{array} \begin{array}{c} \hline x & \hline y \\ \hline z \\ \hline B \\ \end{array} \begin{array}{c} \hline x & \hline y \\ \hline z \\ \hline C \\ \end{array} \end{array} \begin{array}{c} \hline x & \hline y \\ \hline z \\ \hline C \\ \end{array} \end{array}$

(a) Write the expression that is represented by each of the three Venn diagrams:

(b) Let F(X, Y, Z) = A + B + C. Use the expressions that you derived in part (a) to draw the K-map for the Boolean function F. Then use the K-map to derive the minimum-cost <u>SOP</u> expression for F.

(c) Draw the circuit for your expression from part (b). Label all inputs and outputs.

- 7. Derive the minimum <u>SOP</u> expression using a K-map (3 x 5p each = 15p)
- (a) Draw the K-map for the following function

 $F(a,b,c,d)=\Sigma m(0, 1, 7, 10, 11) + D(2, 4, 6, 8, 9, 14)$

(b) Use the K-map to derive the minimum-cost <u>SOP</u> expression for the function F.

(c) Draw the circuit diagram for the minimum expression from part (b).

8. NAND/NOR Logic (2 x 5p each = 10p)
(a) Using <u>only NOR gates</u>, draw the logic circuit that corresponds to this K-map:

(b) Draw the circuit for $F(X, Y, Z) = \Pi M (1, 2, 4, 6, 7)$ using <u>only NAND gates</u>.

	x_3	x_2	x_1	x_0	а	b	С	d	е	f	8
0	0	0	0	0	1	1	1	1	1	1	0
	0	0	0	1	0	1	1	0	0	0	0
5	0	0	1	0	1	1	0	1	1	0	1
З	0	0	1	1	1	1	1	1	0	0	1
ч	0	1	0	0	0	1	1	0	0	1	1
S	0	1	0	1	1	0	1	1	0	1	1
8	0	1	1	0	1	0	1	1	1	1	1
٦	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

9. Seven-Segment Display (3 x 5p each = 15p). The truth table for a Boolean function that convers its 4 binary inputs into a 7-segment display code is given below.

(a) Derive a minimum-cost <u>SOP</u> expression for the output b.

(b) Derive a minimum-cost <u>POS</u> expression for the output f.

(c) Derive a minimum-cost <u>POS</u> expression for the output g.

10. Minimization with Theorems (15p) Use the theorems of Boolean algebra to simplify the following Boolean function

$$f(x, y, z) = x y \overline{z} (x + y) + \overline{z} (\overline{x + y}) + x (\overline{x + yz}) + 1 (z + x \overline{y}) + \overline{x + z}$$

Question	Max	Score
1. True/False	10	
2. Three-variable K-map	5	
3. Truth Tables	15	
4. Number Conversions	20	
5. Minimization	10	
6. Venn Diagrams	15	
7. SOP with K-Map	15	
8. NAND/NOR Logic	10	
9. Seven-Segment Display	15	
10. Minimization	15	
TOTAL:	130	