CprE 281: Digital Logic

Midterm 1: Friday Sep 21, 2018
Student Name: \qquad

Student ID Number:

\qquad

Lab Section:	Mon 12-3(P)	Tue 11-2(U)	Wed 8-11(J)	Thur 11-2(Q)	Fri 11-2(G)
(circle one)		Tue 2-5(M)	Wed 11-2(W)	Thur 11-2(V)	
		Tue 2-5(Z)	Wed 6-9(T)	Thur 2-5(L)	
				Thur 5-8(K)	

1. True/False Questions ($10 \times 1 \mathrm{p}$ each $=10 \mathrm{p}$)
(a) I forgot to write down my name, student ID, and lab section.
(b) A NOR gat can be built using one AND gate and two NOT gates.
(c) It is possible to build an AND gate with a 4-to-1 multiplexer.

TRUE / FALSE
(d) A two-input AND requires more transistors than a three-input OR.

TRUE / FALSE
(e) An XOR can be implemented with a 2-to-1 multiplexer and one NOT. TRUE / FALSE
(f) $\overline{x+y}+\bar{x} y+x \bar{y}+x y=1$.

TRUE / FALSE
(g) $\operatorname{XOR}(\mathrm{x}, 1)=\overline{\mathrm{x}}$

TRUE / FALSE
(h) $\operatorname{XOR}(\operatorname{XOR}(x, 0), 1)=x$

TRUE / FALSE
(i) A NAND can be implemented with fewer transistors than a NOR.

TRUE / FALSE
(j) Tatooine, Alderaan, and Jedha are all planets in the Star Wars universe. TRUE / FALSE
2. Three-Variable K-map (5p)

Draw the K-map and derive the minimum POS expression for $\mathbf{f}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum \mathbf{m}(\mathbf{0}, \mathbf{4}, \mathbf{7})+\mathbf{D}(\mathbf{6})$.
3. Truth Tables ($3 \times 5 p$ each $=15 p$)
(a) Draw the truth table for the Boolean function F that has the following K-Map:

(b) Prove that $(x+y) \bullet(x+\bar{y})=x$ using truth tables.
(c) Draw the truth table for the function $f(a, b, c)=\overline{\mathbf{a}} \mathbf{b}+\mathbf{a} \bar{c}+\overline{\mathbf{a}} \overline{\mathbf{b}} \mathbf{c}$.
4. Number Conversions ($5 \times 4 p$ each $=20 p$)
(a) Convert 21910 to binary
(b) Convert 11014 to decimal
(c) Find the values of the digits x and y in the equation: $X Y_{5}=1101_{2}$
(d) Convert 8513049 to ternary (base 3)
(e) Compute the following sums where all numbers are in base 5:
$\begin{array}{r}43 \\ +4 \\ \hline\end{array} \begin{array}{r}142 \\ \hline\end{array}$
5. Minimization ($2 \times 5 p$ each $=10 p$)

Consider the Boolean function $f(X, Y, Z)=((\overline{(\mathbf{Z}+\mathbf{Z})}+\mathbf{Y})+\mathbf{X})+\overline{(\mathbf{X}+\mathbf{Y})}$
(a) Draw the circuit diagram for this expression using only NOR gates.
(b) Use the theorems of Boolean algebra to simplify the expression from part (a).
6. Venn Diagrams ($3 \times 5 p$ each $=15 p$)
(a) Write the expression that is represented by each of the three Venn diagrams:

(A)

(B)

(C)

$$
A=
$$

$B=$
(b) Let $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathbf{A}+\mathbf{B}+\mathbf{C}$. Use the expressions that you derived in part (a) to draw the K-map for the Boolean function F. Then use the K-map to derive the minimumcost SOP expression for F.
(c) Draw the circuit for your expression from part (b). Label all inputs and outputs.
7. Derive the minimum SOP expression using a K-map ($3 \times 5 \mathrm{p}$ each $=15 \mathrm{p}$)
(a) Draw the K-map for the following function

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\operatorname{m}(0,1,7,10,11)+\mathrm{D}(2,4,6,8,9,14)
$$

(b) Use the K-map to derive the minimum-cost $\underline{\text { SOP }}$ expression for the function F.
(c) Draw the circuit diagram for the minimum expression from part (b).
8. NAND/NOR Logic ($2 \times 5 p$ each $=10 p$)
(a) Using only NOR gates, draw the logic circuit that corresponds to this K-map:

(b) Draw the circuit for $F(X, Y, Z)=\Pi M(1,2,4,6,7)$ using only NAND gates.
9. Seven-Segment Display (3×5 peach $=15 p$). The truth table for a Boolean function that convers its $\mathbf{4}$ binary inputs into a 7 -segment display code is given below.

	x_{3}	x_{2}	x_{1}	x_{0}	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
I	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

(a) Derive a minimum-cost SOP expression for the output b.
(b) Derive a minimum-cost POS expression for the output f.
(c) Derive a minimum-cost POS expression for the output g.

10. Minimization with Theorems (15p)

Use the theorems of Boolean algebra to simplify the following Boolean function
$f(x, y, z)=x y \bar{z}(x+y)+\bar{z}(\overline{x+\bar{y}})+x(\overline{\bar{x}+y z})+1(z+x \bar{y})+\overline{\bar{x}+z}$

Question	Max	Score
1. True/False	10	
2. Three-variable K-map	5	
3. Truth Tables	15	
4. Number Conversions	20	
5. Minimization	10	
6. Venn Diagrams	15	
7. SOP with K-Map	15	
8. NAND/NOR Logic	10	
9. Seven-Segment Display	15	
10. Minimization	15	
TOTAL:	130	

