#### Cpr E 281 RC-mini WEEK 7

### ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

# Recitation Material for Week 7 Tasks to do in the recitation section Assigned Date: Sixth Week

- T1. Review HW05 problems and solve any problems that the students point out they had difficulties with.
- T2. Answer any general questions about HW06 and the Mini Project.
- T3. Solve the following problems.
- 1. Consider the function  $f(a,b,c,d) = \sum m(4,7,8,11) + D(12,15)$ .
  - a. Use K-map to find a minimum-cost SOP realization for f. What is the cost of this expression?
  - b. Implement f using two 2-input OR gates and two 3-input AND gates. What is the cost of this implementation? *Hint:* You may need to consider a multilevel implementation of the expression in part (a).
- 2. Suppose you want to uniquely represent 24 objects using a binary number. What is the minimum number of bits that you need? What if you have n objects?
- 3. Perform the following conversions:
  - a. (1010101)<sub>2</sub> to decimal
  - b.  $(139)_{10}$  to binary
  - c. (0101101110)<sub>2</sub> to hexadecimal
  - d. (ABC)<sub>16</sub> to binary
  - e. (FE45)<sub>16</sub> to octal
  - f. (1234)<sub>5</sub> to base 6 representation
  - g. -25 in decimal to 6-bit sign-and-magnitude
  - h. -25 in decimal to 6-bit 1's complement
  - i. -25 in decimal to 6-bit 2's complement
  - j. (10110)<sub>2</sub> in 5-bit sign-and-magnitude to 5-bit 1's complement
  - k. (10110)<sub>2</sub> in 5-bit sign-and-magnitude to 5-bit 2's complement
  - I. (11101)<sub>2</sub> in 5-bit 1's complement to 5-bit sign-and-magnitude
  - m. (11101)<sub>2</sub> in 5-bit 1's complement to 5-bit 2's complement
  - n. (101110)<sub>2</sub> in 6-bit 2's complement to 6-bit sign-and-magnitude
  - o. (101110)<sub>2</sub> in 6-bit 2's complement to 6-bit 1's complement
  - p. (010101)2 in 6-bit sign-and-magnitude to 6-bit 2's complement

#### Cpr E 281 RC-mini WEEK 7

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

# Recitation Material for Week 7 Tasks to do in the recitation section Assigned Date: Sixth Week

- 4. Negate the following 6-bit 2's complement binary numbers:
  - a. 001010
  - b. 110011
  - c. 010101
  - d. 111000
- 5. What should the base b be such that x=3 is a root of the equation

$$6_b x^2 - 55_b x + 105_b = 0$$
?

6. Perform the addition of the numbers listed in each column and determine if overflow occurs. All numbers are 6-bit and stored in 2's complement.

| 011101 | 000101 | 111101 | 111110 |
|--------|--------|--------|--------|
| 001000 | 101010 | 001111 | 111001 |